Vani’s hair dryer has a resistance of $50\Omega $ when it is first turned on.
1. How much current does the hair dryer draw from the $230V$- line in Vani’s house?
2. What happens to the resistance of the hair dryer when it runs for a long time?
Answer
Verified
117.3k+ views
Hint: The current that is flowing through the hair dryer can be found using the Ohm’s law and substituting the values of the resistance and voltage we get the current in the dryer. When a long time goes by the temperature increases so resistance also increases.
Formula Used
In the solution we will be using the following formula,
$V = IR$
where $V$ is the voltage, $I$ is the current and $R$ is the resistance.
Complete step by step answer:
In the problem, we are given the resistance of the hair dryer as $50\Omega $. It is connected to the $230V$ line in Vani’s house. Now from Ohm’s law, we can find the current that is drawn by the hair dryer from the $230V$ line.
The Ohm’s law is given as,
$V = IR$
Therefore, $V = 230V$ and the resistance is given as, $R = 50\Omega $
So substituting we get,
$230 = I \times 50$
Therefore, we can find the current by dividing both the sides by 50 and get,
$I = \dfrac{{230}}{{50}}A$
On calculating we get,
$I = 4.6A$
So the current drawn by the hair dryer is $4.6A$.
The hair dryer is made of metal. So as the time goes by the metal gets heated up. The resistance is directly proportional to the temperature. So as the temperature increases, the resistance also increases.
So after some time, the fuse that is installed in the hair dryer cuts out the current that is flowing in the hair dryer.
Note Ohm's law says that for the resistance remaining constant, the current increases with the voltage. This relation between the current and voltage is not linear in some materials. They are called non-ohmic.
Formula Used
In the solution we will be using the following formula,
$V = IR$
where $V$ is the voltage, $I$ is the current and $R$ is the resistance.
Complete step by step answer:
In the problem, we are given the resistance of the hair dryer as $50\Omega $. It is connected to the $230V$ line in Vani’s house. Now from Ohm’s law, we can find the current that is drawn by the hair dryer from the $230V$ line.
The Ohm’s law is given as,
$V = IR$
Therefore, $V = 230V$ and the resistance is given as, $R = 50\Omega $
So substituting we get,
$230 = I \times 50$
Therefore, we can find the current by dividing both the sides by 50 and get,
$I = \dfrac{{230}}{{50}}A$
On calculating we get,
$I = 4.6A$
So the current drawn by the hair dryer is $4.6A$.
The hair dryer is made of metal. So as the time goes by the metal gets heated up. The resistance is directly proportional to the temperature. So as the temperature increases, the resistance also increases.
So after some time, the fuse that is installed in the hair dryer cuts out the current that is flowing in the hair dryer.
Note Ohm's law says that for the resistance remaining constant, the current increases with the voltage. This relation between the current and voltage is not linear in some materials. They are called non-ohmic.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Young's Double Slit Experiment Derivation
When Barium is irradiated by a light of lambda 4000oversetomathopA class 12 physics JEE_Main
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main
Other Pages
Ideal and Non-Ideal Solutions Raoult's Law - JEE
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season
JEE Main Physics Question Paper PDF Download with Answer Key
JEE Main 2025 Question Paper PDFs with Solutions Free Download