
What is the value of universal gravitational constant G in units of ${g^{ - 1}}c{m^3}{s^{ - 2}}$? Given that $G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
(A) $6.67 \times {10^{ - 8}}$
(B) $6.67 \times {10^{ - 7}}$
(C) $6.67 \times {10^{ - 9}}$
(D) $6.67 \times {10^{ - 10}}$
Answer
233.4k+ views
Hint To convert universal gravitation constant into units of ${g^{ - 1}}c{m^3}{s^{ - 2}}$
Take $N = kgm{s^{ - 2}}$
Convert meter to centimeter
Then convert kilogram to gram and put all of them in the unit $N{m^2}k{g^{ - 2}}$
Complete step-by-step answer:
According to Newton’s Law of Gravitation, the Force (F) is directly proportional to the product of their masses and is inversely proportional to square of distance between them.
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$
where, ${m_1}$ and ${m_2}$ are two masses
$G = $Gravitational Constant
$r = $distance between them
To convert universal gravitational constant to ${g^{ - 1}}c{m^3}{s^{ - 2}}$ from $N{m^2}k{g^{ - 2}}$
It is given that,
$G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
As we know that, $N = kgm{s^{ - 2}}$, $m = 100cm$ and $1kg = 1000g$
$\therefore G = 6.67 \times {10^{ - 11}} \times \left( {kgm{s^{ - 2}}} \right)\left( {{m^2}} \right){\left( {kg} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times \left[ {\left( {1000g} \right) \times \left( {100cm} \right) \times {s^{ - 2}}} \right] \times {\left( {100cm} \right)^2} \times {\left( {1000g} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times {10^3}{g^{ - 1}}c{m^3}{s^{ - 1}}$
Therefore, $G = 6.67 \times {10^{ - 8}}{g^{ - 1}}c{m^3}{s^{ - 1}}$
So, the option (A) is correct.
Note The Gravitational Constant is also known as Newtonian Constant of Gravitation and Cavendish Gravitational Constant denoted by G. It is an empirical physical constant. It is involved in the calculation of gravitation effects in Sir Isaac Newton’s law of universal gravitation and in Albert Einstein’s general theory of relativity.
The relation between $g$ and $G$ can be expressed as
$g = \dfrac{{GM}}{{{r^2}}}$
Take $N = kgm{s^{ - 2}}$
Convert meter to centimeter
Then convert kilogram to gram and put all of them in the unit $N{m^2}k{g^{ - 2}}$
Complete step-by-step answer:
According to Newton’s Law of Gravitation, the Force (F) is directly proportional to the product of their masses and is inversely proportional to square of distance between them.
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$
where, ${m_1}$ and ${m_2}$ are two masses
$G = $Gravitational Constant
$r = $distance between them
To convert universal gravitational constant to ${g^{ - 1}}c{m^3}{s^{ - 2}}$ from $N{m^2}k{g^{ - 2}}$
It is given that,
$G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
As we know that, $N = kgm{s^{ - 2}}$, $m = 100cm$ and $1kg = 1000g$
$\therefore G = 6.67 \times {10^{ - 11}} \times \left( {kgm{s^{ - 2}}} \right)\left( {{m^2}} \right){\left( {kg} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times \left[ {\left( {1000g} \right) \times \left( {100cm} \right) \times {s^{ - 2}}} \right] \times {\left( {100cm} \right)^2} \times {\left( {1000g} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times {10^3}{g^{ - 1}}c{m^3}{s^{ - 1}}$
Therefore, $G = 6.67 \times {10^{ - 8}}{g^{ - 1}}c{m^3}{s^{ - 1}}$
So, the option (A) is correct.
Note The Gravitational Constant is also known as Newtonian Constant of Gravitation and Cavendish Gravitational Constant denoted by G. It is an empirical physical constant. It is involved in the calculation of gravitation effects in Sir Isaac Newton’s law of universal gravitation and in Albert Einstein’s general theory of relativity.
The relation between $g$ and $G$ can be expressed as
$g = \dfrac{{GM}}{{{r^2}}}$
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

