
What is the value of the definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]?
A. 0
B. \[\dfrac{4}{{3\sqrt 3 }}\]
C. \[\dfrac{3}{7}\]
D. \[\dfrac{5}{6}\]
Answer
161.7k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the greatest integer function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
