
What is the value of the definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]?
A. 0
B. \[\dfrac{4}{{3\sqrt 3 }}\]
C. \[\dfrac{3}{7}\]
D. \[\dfrac{5}{6}\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the greatest integer function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

