
What is the value of the definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]?
A. 0
B. \[\dfrac{4}{{3\sqrt 3 }}\]
C. \[\dfrac{3}{7}\]
D. \[\dfrac{5}{6}\]
Answer
216.3k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the greatest integer function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
Amortization Calculator – Loan Schedule, EMI & Table

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

