
What is the value of inductance \[L\] for which the current is a maximum in a series LCR circuit with \[C = 10\mu F\] and \[\omega = 1000rad{\sec ^{ - 1}}\]?
A) \[10mH\]
B) \[100mH\]
C) \[1mH\]
D) Cannot be calculated unless R is known.
Answer
232.8k+ views
Hint: In the question it is written that the current is maximum in the given series LCR circuit. This condition is true, at resonance. Series LCR circuit is also known as a resonant circuit or RLC circuit. Thus, we need to consider the relation between \[\omega \] \[L\] and\[C\], in order to get the value of \[L\].
Complete step by step solution:
We know that this circuit consists of inductance, resistance and capacitance in series or parallel.
We are aware that an electrical circuit is in resonance, when maximum current flows through the circuit for a particular source of alternating supply having a constant frequency.
At resonance, the capacitive reactance always equals to inductive reaction.
We know,
Capacitive reactance is formulated as:
\[{X_C} = \dfrac{1}{{\omega C}}\]
Where,
\[C\]is the capacitance and
\[\omega \] is the Resonant frequency
Inductive reactance is formulated as:
\[{X_L} = \omega L\]
Where,
\[L\]is the inductance.
\[\omega \] is the Resonant frequency
Thus, equating the above equations, we obtain:
\[\omega L = \dfrac{1}{{\omega C}}\]
Rearranging the equations, we get:
\[L = \dfrac{1}{{{\omega ^2}C}}\]
Now, putting the values, we obtain:
\[L = \dfrac{1}{{{{(1000)}^2}(10 \times {{10}^{ - 6}})}}\]
We multiplied the capacitance value with \[{10^{ - 6}}\] to get the value in Farad, which is the SI unit of capacitance.
Thus,
\[L = 0.1H = 100mH\]
This is the required answer.
Therefore, option (B) is correct.
Note: An important point to be noted is that, here, in case of inductor, voltage leads current by an angle of \[{90^o}\], in case of capacitance, current leads voltage by an angle of \[{90^o}\] but in case of resistance, both current and voltage are in same phase. The units of all parameters must be considered in their respective SI units, otherwise it will give erroneous results. RLC circuits are used in tuning applications.
Complete step by step solution:
We know that this circuit consists of inductance, resistance and capacitance in series or parallel.
We are aware that an electrical circuit is in resonance, when maximum current flows through the circuit for a particular source of alternating supply having a constant frequency.
At resonance, the capacitive reactance always equals to inductive reaction.
We know,
Capacitive reactance is formulated as:
\[{X_C} = \dfrac{1}{{\omega C}}\]
Where,
\[C\]is the capacitance and
\[\omega \] is the Resonant frequency
Inductive reactance is formulated as:
\[{X_L} = \omega L\]
Where,
\[L\]is the inductance.
\[\omega \] is the Resonant frequency
Thus, equating the above equations, we obtain:
\[\omega L = \dfrac{1}{{\omega C}}\]
Rearranging the equations, we get:
\[L = \dfrac{1}{{{\omega ^2}C}}\]
Now, putting the values, we obtain:
\[L = \dfrac{1}{{{{(1000)}^2}(10 \times {{10}^{ - 6}})}}\]
We multiplied the capacitance value with \[{10^{ - 6}}\] to get the value in Farad, which is the SI unit of capacitance.
Thus,
\[L = 0.1H = 100mH\]
This is the required answer.
Therefore, option (B) is correct.
Note: An important point to be noted is that, here, in case of inductor, voltage leads current by an angle of \[{90^o}\], in case of capacitance, current leads voltage by an angle of \[{90^o}\] but in case of resistance, both current and voltage are in same phase. The units of all parameters must be considered in their respective SI units, otherwise it will give erroneous results. RLC circuits are used in tuning applications.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

