
What is the value of inductance \[L\] for which the current is a maximum in a series LCR circuit with \[C = 10\mu F\] and \[\omega = 1000rad{\sec ^{ - 1}}\]?
A) \[10mH\]
B) \[100mH\]
C) \[1mH\]
D) Cannot be calculated unless R is known.
Answer
162.3k+ views
Hint: In the question it is written that the current is maximum in the given series LCR circuit. This condition is true, at resonance. Series LCR circuit is also known as a resonant circuit or RLC circuit. Thus, we need to consider the relation between \[\omega \] \[L\] and\[C\], in order to get the value of \[L\].
Complete step by step solution:
We know that this circuit consists of inductance, resistance and capacitance in series or parallel.
We are aware that an electrical circuit is in resonance, when maximum current flows through the circuit for a particular source of alternating supply having a constant frequency.
At resonance, the capacitive reactance always equals to inductive reaction.
We know,
Capacitive reactance is formulated as:
\[{X_C} = \dfrac{1}{{\omega C}}\]
Where,
\[C\]is the capacitance and
\[\omega \] is the Resonant frequency
Inductive reactance is formulated as:
\[{X_L} = \omega L\]
Where,
\[L\]is the inductance.
\[\omega \] is the Resonant frequency
Thus, equating the above equations, we obtain:
\[\omega L = \dfrac{1}{{\omega C}}\]
Rearranging the equations, we get:
\[L = \dfrac{1}{{{\omega ^2}C}}\]
Now, putting the values, we obtain:
\[L = \dfrac{1}{{{{(1000)}^2}(10 \times {{10}^{ - 6}})}}\]
We multiplied the capacitance value with \[{10^{ - 6}}\] to get the value in Farad, which is the SI unit of capacitance.
Thus,
\[L = 0.1H = 100mH\]
This is the required answer.
Therefore, option (B) is correct.
Note: An important point to be noted is that, here, in case of inductor, voltage leads current by an angle of \[{90^o}\], in case of capacitance, current leads voltage by an angle of \[{90^o}\] but in case of resistance, both current and voltage are in same phase. The units of all parameters must be considered in their respective SI units, otherwise it will give erroneous results. RLC circuits are used in tuning applications.
Complete step by step solution:
We know that this circuit consists of inductance, resistance and capacitance in series or parallel.
We are aware that an electrical circuit is in resonance, when maximum current flows through the circuit for a particular source of alternating supply having a constant frequency.
At resonance, the capacitive reactance always equals to inductive reaction.
We know,
Capacitive reactance is formulated as:
\[{X_C} = \dfrac{1}{{\omega C}}\]
Where,
\[C\]is the capacitance and
\[\omega \] is the Resonant frequency
Inductive reactance is formulated as:
\[{X_L} = \omega L\]
Where,
\[L\]is the inductance.
\[\omega \] is the Resonant frequency
Thus, equating the above equations, we obtain:
\[\omega L = \dfrac{1}{{\omega C}}\]
Rearranging the equations, we get:
\[L = \dfrac{1}{{{\omega ^2}C}}\]
Now, putting the values, we obtain:
\[L = \dfrac{1}{{{{(1000)}^2}(10 \times {{10}^{ - 6}})}}\]
We multiplied the capacitance value with \[{10^{ - 6}}\] to get the value in Farad, which is the SI unit of capacitance.
Thus,
\[L = 0.1H = 100mH\]
This is the required answer.
Therefore, option (B) is correct.
Note: An important point to be noted is that, here, in case of inductor, voltage leads current by an angle of \[{90^o}\], in case of capacitance, current leads voltage by an angle of \[{90^o}\] but in case of resistance, both current and voltage are in same phase. The units of all parameters must be considered in their respective SI units, otherwise it will give erroneous results. RLC circuits are used in tuning applications.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main
