
Using bond energy data, calculate heat of formation of isoprene.
Given, C-H, H-H, C-C, C=C and C(s)$\to $C(g) respectively as 98.8 kcal, 104 kcal, 83kcal, 147kcal, 171kcal.

(a) -21 kcal
(b) 21 kcal
(c) 40 kcal
(d) 50 kcal
Answer
164.4k+ views
Hint: As we know, a chemical reaction involves breaking and forming of chemical bonds. During the formation of the bond, energy is released and during the breaking of a bond, energy is absorbed.
So, the enthalpy changes involving gaseous reactants and gaseous products having covalent bonds can be calculated with the help of bond enthalpies of reactants and products using the following formula.
Heat of Reaction=$\sum{\Delta {{\text{H}}^{\text{o}}}}(\text{reactant bonds)-}\sum{\Delta {{\text{H}}^{\text{o}}}}(\text{products bonds)}$
Complete step-by-step answer:
As it is mentioned in the hint, the bonds between atoms may break, reform or both to either absorb or release energy during chemical reaction. This results in a change to the potential energy of the system. The heat absorbed or released from a system under constant pressure is known as enthalpy and the change in enthalpy that results from a chemical reaction is the enthalpy of reaction. It is generally written as$\Delta {{\text{H}}_{\text{rxn}}}$.
Mathematically, we can think of the enthalpy of reaction as the difference between the potential energy from the product bonds and the energy of the reactant bonds:
$\Delta {{\text{H}}_{\text{rxn}}}$=potential energy of product bonds-potential energy of reactant bonds.
As it is given in the question:
\[\text{C-H=98}\text{.8 kcal}\]
\[\text{H-H=104 kcal}\]
\[\text{C-C=83 kcal}\]
\[\text{C=C =147 kcal}\]
\[\text{C(s)}\to \text{C(g)=171 kcal}\]
Reaction:

\[\text{5x }\!\![\!\!\text{ C(s)}\to \text{C(g) }\!\!]\!\!\text{ =5x171 kcal=855 kcal}\]
$4{{\text{H}}_{2}}$$\Rightarrow 4\text{x}104=416\text{kcal}$
$\sum{\text{BE(}5\text{C}+4{{\text{H}}_{2}})}\Rightarrow 855+416$
$\sum{\text{BE=C-H}\Rightarrow \text{8x98}\text{.8=790}\text{.4}}$
$\Rightarrow \text{C-C=2x83=166 kcal}$
$\Rightarrow \text{C=C= 2x147=294 kcal}$
$\Delta {{\text{H}}_{\text{f}}}=\Delta \text{HB}{{\text{E}}_{\text{r}}}-\Delta \text{HB}{{\text{E}}_{\text{p}}}$= (855+416)-(790.4+166+294)
=1271-1250.4
=20.6 kcal
The closest option from the answer obtained is option (b) 21 kcal.
Note: Please note that the bond energy that is given in the question is for single bonds. Always multiply the stoichiometric coefficient to have the right bond energy for the specific compounds. This can often be a very lengthy calculation if there are a lot of bonds, so you should practice to just look and calculate for the bonds that are changing as in the example.
So, the enthalpy changes involving gaseous reactants and gaseous products having covalent bonds can be calculated with the help of bond enthalpies of reactants and products using the following formula.
Heat of Reaction=$\sum{\Delta {{\text{H}}^{\text{o}}}}(\text{reactant bonds)-}\sum{\Delta {{\text{H}}^{\text{o}}}}(\text{products bonds)}$
Complete step-by-step answer:
As it is mentioned in the hint, the bonds between atoms may break, reform or both to either absorb or release energy during chemical reaction. This results in a change to the potential energy of the system. The heat absorbed or released from a system under constant pressure is known as enthalpy and the change in enthalpy that results from a chemical reaction is the enthalpy of reaction. It is generally written as$\Delta {{\text{H}}_{\text{rxn}}}$.
Mathematically, we can think of the enthalpy of reaction as the difference between the potential energy from the product bonds and the energy of the reactant bonds:
$\Delta {{\text{H}}_{\text{rxn}}}$=potential energy of product bonds-potential energy of reactant bonds.
As it is given in the question:
\[\text{C-H=98}\text{.8 kcal}\]
\[\text{H-H=104 kcal}\]
\[\text{C-C=83 kcal}\]
\[\text{C=C =147 kcal}\]
\[\text{C(s)}\to \text{C(g)=171 kcal}\]
Reaction:

\[\text{5x }\!\![\!\!\text{ C(s)}\to \text{C(g) }\!\!]\!\!\text{ =5x171 kcal=855 kcal}\]
$4{{\text{H}}_{2}}$$\Rightarrow 4\text{x}104=416\text{kcal}$
$\sum{\text{BE(}5\text{C}+4{{\text{H}}_{2}})}\Rightarrow 855+416$
$\sum{\text{BE=C-H}\Rightarrow \text{8x98}\text{.8=790}\text{.4}}$
$\Rightarrow \text{C-C=2x83=166 kcal}$
$\Rightarrow \text{C=C= 2x147=294 kcal}$
$\Delta {{\text{H}}_{\text{f}}}=\Delta \text{HB}{{\text{E}}_{\text{r}}}-\Delta \text{HB}{{\text{E}}_{\text{p}}}$= (855+416)-(790.4+166+294)
=1271-1250.4
=20.6 kcal
The closest option from the answer obtained is option (b) 21 kcal.
Note: Please note that the bond energy that is given in the question is for single bonds. Always multiply the stoichiometric coefficient to have the right bond energy for the specific compounds. This can often be a very lengthy calculation if there are a lot of bonds, so you should practice to just look and calculate for the bonds that are changing as in the example.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
