
How do you use the chain rule to differentiate $ y=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{5}}}{3{{x}^{4}}-2}$ ?
Answer
124.5k+ views
Hint: In order to do this question, first you need to use the quotient rule to the differentiation. Quotient rule states that, if you have any equation in the form of $ y=\dfrac{u}{v}$, then you can differentiate the equation, by using the formula $ y'=\dfrac{u'v-v'u}{{{v}^{2}}}$. Here we get $ u={{\left( {{x}^{3}}+4 \right)}^{5}}$ and $ v=3{{x}^{4}}-2$. Then you can find the u’ and v’ and substitute all the required equations in the formula to get the final answer.
Complete step by step solution:
In order to do this question, first you need to use the quotient rule to the differentiation. Quotient rule states that, if you have any equation in the form of $ y=\dfrac{u}{v}$, then you can differentiate the equation, by using the formula $ y'=\dfrac{u'v-v'u}{{{v}^{2}}}$. Here we get $ u={{\left( {{x}^{3}}+4 \right)}^{5}}$ and $ v=3{{x}^{4}}-2$. First we need to find the values for u’ and v’.
To find u’ we use chain rule. Therefore, we get the u’ as
$ \Rightarrow u={{\left( {{x}^{3}}+4 \right)}^{5}}$
$ \Rightarrow u'=5{{\left( {{x}^{3}}+4 \right)}^{4}}\dfrac{d}{dx}\left( {{x}^{3}}+4 \right)$
$ \Rightarrow u'=5{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 3{{x}^{2}} \right)$
Now we have to find v’
$ \Rightarrow v=3{{x}^{4}}-2$
$ \Rightarrow v=12{{x}^{3}}$
Therefore, now we have to substitute the value of u, v, u’, v’ in the quotient rule formula to get the final answer. Finally, we get
$ \Rightarrow y'=\dfrac{u'v-v'u}{{{v}^{2}}}$
$ \Rightarrow y'=\dfrac{5{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 3{{x}^{2}} \right)\left( 3{{x}^{4}}-2 \right)-12{{x}^{3}}\left( {{\left( {{x}^{3}}+4 \right)}^{5}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
$ \Rightarrow y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( \left( 45{{x}^{6}}-30{{x}^{2}} \right)-12{{x}^{3}}\left( {{x}^{3}}+4 \right) \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
$ \Rightarrow y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 45{{x}^{6}}-30{{x}^{2}}-12{{x}^{6}}-48{{x}^{3}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
$ \Rightarrow y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 33{{x}^{6}}-30{{x}^{2}}-48{{x}^{3}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
Therefore, we get the final answer for the differentiation as $ y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 33{{x}^{6}}-30{{x}^{2}}-48{{x}^{3}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$.
Note: To do this question, you need to know the basic rules and formulas of the differentiation like the product rule, chain rule, quotient rule, and others. Also you need to know the basics of differentiation. They will really help to solve the questions easily.
Complete step by step solution:
In order to do this question, first you need to use the quotient rule to the differentiation. Quotient rule states that, if you have any equation in the form of $ y=\dfrac{u}{v}$, then you can differentiate the equation, by using the formula $ y'=\dfrac{u'v-v'u}{{{v}^{2}}}$. Here we get $ u={{\left( {{x}^{3}}+4 \right)}^{5}}$ and $ v=3{{x}^{4}}-2$. First we need to find the values for u’ and v’.
To find u’ we use chain rule. Therefore, we get the u’ as
$ \Rightarrow u={{\left( {{x}^{3}}+4 \right)}^{5}}$
$ \Rightarrow u'=5{{\left( {{x}^{3}}+4 \right)}^{4}}\dfrac{d}{dx}\left( {{x}^{3}}+4 \right)$
$ \Rightarrow u'=5{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 3{{x}^{2}} \right)$
Now we have to find v’
$ \Rightarrow v=3{{x}^{4}}-2$
$ \Rightarrow v=12{{x}^{3}}$
Therefore, now we have to substitute the value of u, v, u’, v’ in the quotient rule formula to get the final answer. Finally, we get
$ \Rightarrow y'=\dfrac{u'v-v'u}{{{v}^{2}}}$
$ \Rightarrow y'=\dfrac{5{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 3{{x}^{2}} \right)\left( 3{{x}^{4}}-2 \right)-12{{x}^{3}}\left( {{\left( {{x}^{3}}+4 \right)}^{5}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
$ \Rightarrow y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( \left( 45{{x}^{6}}-30{{x}^{2}} \right)-12{{x}^{3}}\left( {{x}^{3}}+4 \right) \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
$ \Rightarrow y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 45{{x}^{6}}-30{{x}^{2}}-12{{x}^{6}}-48{{x}^{3}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
$ \Rightarrow y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 33{{x}^{6}}-30{{x}^{2}}-48{{x}^{3}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$
Therefore, we get the final answer for the differentiation as $ y'=\dfrac{{{\left( {{x}^{3}}+4 \right)}^{4}}\left( 33{{x}^{6}}-30{{x}^{2}}-48{{x}^{3}} \right)}{{{\left( 3{{x}^{4}}-2 \right)}^{2}}}$.
Note: To do this question, you need to know the basic rules and formulas of the differentiation like the product rule, chain rule, quotient rule, and others. Also you need to know the basics of differentiation. They will really help to solve the questions easily.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Physics Average Value and RMS Value JEE Main 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
