
Unit of electric field intensity is not:
(A) $\dfrac{V}{m}$
(B) $\dfrac{N}{C}$
(C) $\dfrac{{dyne}}{{statcoulomb}}$
(D) $\text{None of these}$
Answer
216.3k+ views
Hint: The electric field intensity at any point is defined as the force experienced by a unit positive charge placed at that point.
Complete solution:
1. A positive charge or a negative charge is said to create its field around itself. If a charge ${Q_1}$ exerts a force on charge ${Q_2}$ placed near it, it may be stated that since ${Q_2}$ is in the field of ${Q_1}$, it experiences some force, or it may also be said that since charge ${Q_1}$ is inside the field of ${Q_2}$, it experience some force. Thus space around a charge in which another charged particle experiences a force is said to have an electrical field in it.
2. The electric field intensity at any point is defined as the force experienced by a unit positive charge placed at that point.
$\overrightarrow E = \dfrac{{\overrightarrow F }}{{{q_0}}}$ Where ${q_0} \to 0$ so that presence of this charge may not affect the source charge Q and its electric field is not changed, therefore expression for electric field intensity can be better written as
$\overrightarrow E = \mathop {\lim }\limits_{{q_0} \to 0} \dfrac{{\overrightarrow F }}{{{q_0}}}$.
3. So, from these formulas the S.I unit of electric force intensity is
$\dfrac{F}{q} = \dfrac{{Newton}}{{Coulomb}} = \dfrac{N}{C} = \dfrac{{Volt}}{{meter}} = \dfrac{V}{m} = \dfrac{{Joule}}{{coulomb*meter}}$ and $C.G.S.$ $unit$- $\dfrac{dyne}{statcoulomb}$.
Hence from the given options (D) is correct.
Note: Electric field intensity is a vector quantity. Electric field due to a positive charge is always away from the charge and that due to a negative charge is always towards the charge. The stat coulomb is defined as if two stationary objects each carry a charge of 1 stat coulomb and are 1 cm apart, they will electrically repel each other with a force of 1 dyne.
Complete solution:
1. A positive charge or a negative charge is said to create its field around itself. If a charge ${Q_1}$ exerts a force on charge ${Q_2}$ placed near it, it may be stated that since ${Q_2}$ is in the field of ${Q_1}$, it experiences some force, or it may also be said that since charge ${Q_1}$ is inside the field of ${Q_2}$, it experience some force. Thus space around a charge in which another charged particle experiences a force is said to have an electrical field in it.
2. The electric field intensity at any point is defined as the force experienced by a unit positive charge placed at that point.
$\overrightarrow E = \dfrac{{\overrightarrow F }}{{{q_0}}}$ Where ${q_0} \to 0$ so that presence of this charge may not affect the source charge Q and its electric field is not changed, therefore expression for electric field intensity can be better written as
$\overrightarrow E = \mathop {\lim }\limits_{{q_0} \to 0} \dfrac{{\overrightarrow F }}{{{q_0}}}$.
3. So, from these formulas the S.I unit of electric force intensity is
$\dfrac{F}{q} = \dfrac{{Newton}}{{Coulomb}} = \dfrac{N}{C} = \dfrac{{Volt}}{{meter}} = \dfrac{V}{m} = \dfrac{{Joule}}{{coulomb*meter}}$ and $C.G.S.$ $unit$- $\dfrac{dyne}{statcoulomb}$.
Hence from the given options (D) is correct.
Note: Electric field intensity is a vector quantity. Electric field due to a positive charge is always away from the charge and that due to a negative charge is always towards the charge. The stat coulomb is defined as if two stationary objects each carry a charge of 1 stat coulomb and are 1 cm apart, they will electrically repel each other with a force of 1 dyne.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

