Answer
Verified
78.9k+ views
Hint: Wavefront describes the movement of sound from the source and has its origin in Hygen’s principle. According to it, Sound moves equally in all directions and there cannot be a backward flow of energy and hence no backward wavefront. We can make use of formula for speed to find out the answer of part (a)
Complete Step by step solution:
(a) using the relationship between speed, distance and time we get.
\[\Delta t=\dfrac{d}{v}=\dfrac{D\sin \theta }{v}\]
(b) since, the speed of the sound in water is now \[{{v}_{n}}\] with \[\theta ={{90}^{0}}\], we have
\[\Delta {{t}_{w}}=\dfrac{D\sin \theta }{{{v}_{w}}}=\dfrac{d}{{{v}_{w}}}\]
(c) now to find the apparent angle we can do that as, \[\Delta t=\dfrac{D\sin \theta }{v}=\dfrac{d}{{{v}_{w}}}\]
Solving for the angle \[\theta \]with \[{{v}_{w}}=1482m/s\] we get,
$\Rightarrow \theta ={{\sin }^{-1}}(\dfrac{v}{{{v}_{w}}}) \\
\Rightarrow \theta ={{\sin }^{-1}}(\dfrac{343}{1482}) \\$
$343m/s$ being the speed of sound in air,
$\Rightarrow {{\sin }^{-1}}(0.231) \\
\therefore {{13}^{0}} \\$
Note: Trigonometric ratios are unitless but angles can be measured either in degrees or radians. All the units to be taken in standard SI units of system. A wavefront is a surface over which a wave has a constant phase. Wavefront came into existence from Hygen’s theory of wave picture of light. Wavefront determines the nature and propagation of a light emanating from the given source.
One should always keep in mind that frequency is the characteristic of the source of the light
Complete Step by step solution:
(a) using the relationship between speed, distance and time we get.
\[\Delta t=\dfrac{d}{v}=\dfrac{D\sin \theta }{v}\]
(b) since, the speed of the sound in water is now \[{{v}_{n}}\] with \[\theta ={{90}^{0}}\], we have
\[\Delta {{t}_{w}}=\dfrac{D\sin \theta }{{{v}_{w}}}=\dfrac{d}{{{v}_{w}}}\]
(c) now to find the apparent angle we can do that as, \[\Delta t=\dfrac{D\sin \theta }{v}=\dfrac{d}{{{v}_{w}}}\]
Solving for the angle \[\theta \]with \[{{v}_{w}}=1482m/s\] we get,
$\Rightarrow \theta ={{\sin }^{-1}}(\dfrac{v}{{{v}_{w}}}) \\
\Rightarrow \theta ={{\sin }^{-1}}(\dfrac{343}{1482}) \\$
$343m/s$ being the speed of sound in air,
$\Rightarrow {{\sin }^{-1}}(0.231) \\
\therefore {{13}^{0}} \\$
Note: Trigonometric ratios are unitless but angles can be measured either in degrees or radians. All the units to be taken in standard SI units of system. A wavefront is a surface over which a wave has a constant phase. Wavefront came into existence from Hygen’s theory of wave picture of light. Wavefront determines the nature and propagation of a light emanating from the given source.
One should always keep in mind that frequency is the characteristic of the source of the light
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The IUPAC name of the following compound is A Propane123tricarbonitrile class 12 chemistry JEE_Main
Choose the correct statements A A dimensionally correct class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main