
Two wires of resistances ${R_1}$ and ${R_2}$ at $0^\circ C$ have temperature coefficient of resistance ${\alpha _1}$ and ${\alpha _2}$ , respectively. These are joined in series. The effective temperature coefficient of resistance is:
A) $\dfrac{{{\alpha _1} + {\alpha _2}}}{2}$
B) \[\sqrt {{\alpha _1}{\alpha _2}} \]
C) $\dfrac{{{\alpha _1}{R_1} + {\alpha _2}{R_2}}}{{{R_1} + {R_2}}}$
D) $\sqrt {\dfrac{{{R_1}{R_2}{\alpha _1}{\alpha _2}}}{{R_1^2 + R_2^2}}} $
Answer
218.7k+ views
Hint: Let us suppose that the temperature of the wire has risen to $t$ . Now calculate the resistances of the wires at this temperature and add them to get the effective resistance of the resultant wire when the two wires have been joined together. Compare it with the equation used above to calculate resistances to get h=the value of the resultant temperature coefficient.
Formula Used:
${R_t} = {R_i}(1 + \alpha t)$ where ${R_t}$ is the resistance of the wire at temperature $t$ , ${R_i}$ is the resistance of wire at temperature $0^\circ C$ , $\alpha $ is the temperature coefficient of the wire.
Complete Step by Step Solution:
Wire 1 has resistance ${R_1}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _1}$
Similarly, wire 2 has resistance ${R_2}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _2}$
Now let us assume that after the rise in temperature, the temperature of the wires is $t$
Therefore, resistance for wire 1 at this temperature will be ${R_{t(1)}} = {R_1}(1 + {\alpha _1}t)$ (as per the given values)
And, resistance for wire 2 at this temperature will be ${R_{t(2)}} = {R_2}(1 + {\alpha _2}t)$ (as per the given values)
Now these wires are joined therefore their resistances will also be added to get the resultant resistance.
Therefore, ${R_{final}} = {R_1}(1 + {\alpha _1}t) + {R_2}(1 + {\alpha _2}t)$
Further solving it, we get ${R_{final}} = {R_1} + {R_1}{\alpha _1}t + {R_2} + {R_2}{\alpha _2}t$
Rearranging, ${R_{final}} = ({R_1} + {R_2}) + t({R_1}{\alpha _1} + {R_2}{\alpha _2})$
Taking common terms together, \[{R_{final}} = ({R_1} + {R_2})(1 + (\dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}})t)\]
Now compare this equation with the formula we used above, and we get
$\Rightarrow$ ${R_i} = {R_1} + {R_2}$ , $\alpha = \dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}}$
Therefore, option (C) is the correct answer.
Note: We often ignore the step where we have compared the equations and end up solving them further and ending up leaving the question unanswered. Pay attention to what is asked in the question. If it has a direct formula, that’s good but if not, these methods must be used otherwise you will never get the answer. More practice will make you sharper for questions like these.
Formula Used:
${R_t} = {R_i}(1 + \alpha t)$ where ${R_t}$ is the resistance of the wire at temperature $t$ , ${R_i}$ is the resistance of wire at temperature $0^\circ C$ , $\alpha $ is the temperature coefficient of the wire.
Complete Step by Step Solution:
Wire 1 has resistance ${R_1}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _1}$
Similarly, wire 2 has resistance ${R_2}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _2}$
Now let us assume that after the rise in temperature, the temperature of the wires is $t$
Therefore, resistance for wire 1 at this temperature will be ${R_{t(1)}} = {R_1}(1 + {\alpha _1}t)$ (as per the given values)
And, resistance for wire 2 at this temperature will be ${R_{t(2)}} = {R_2}(1 + {\alpha _2}t)$ (as per the given values)
Now these wires are joined therefore their resistances will also be added to get the resultant resistance.
Therefore, ${R_{final}} = {R_1}(1 + {\alpha _1}t) + {R_2}(1 + {\alpha _2}t)$
Further solving it, we get ${R_{final}} = {R_1} + {R_1}{\alpha _1}t + {R_2} + {R_2}{\alpha _2}t$
Rearranging, ${R_{final}} = ({R_1} + {R_2}) + t({R_1}{\alpha _1} + {R_2}{\alpha _2})$
Taking common terms together, \[{R_{final}} = ({R_1} + {R_2})(1 + (\dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}})t)\]
Now compare this equation with the formula we used above, and we get
$\Rightarrow$ ${R_i} = {R_1} + {R_2}$ , $\alpha = \dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}}$
Therefore, option (C) is the correct answer.
Note: We often ignore the step where we have compared the equations and end up solving them further and ending up leaving the question unanswered. Pay attention to what is asked in the question. If it has a direct formula, that’s good but if not, these methods must be used otherwise you will never get the answer. More practice will make you sharper for questions like these.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

