
Two wires of resistances ${R_1}$ and ${R_2}$ at $0^\circ C$ have temperature coefficient of resistance ${\alpha _1}$ and ${\alpha _2}$ , respectively. These are joined in series. The effective temperature coefficient of resistance is:
A) $\dfrac{{{\alpha _1} + {\alpha _2}}}{2}$
B) \[\sqrt {{\alpha _1}{\alpha _2}} \]
C) $\dfrac{{{\alpha _1}{R_1} + {\alpha _2}{R_2}}}{{{R_1} + {R_2}}}$
D) $\sqrt {\dfrac{{{R_1}{R_2}{\alpha _1}{\alpha _2}}}{{R_1^2 + R_2^2}}} $
Answer
123.3k+ views
Hint: Let us suppose that the temperature of the wire has risen to $t$ . Now calculate the resistances of the wires at this temperature and add them to get the effective resistance of the resultant wire when the two wires have been joined together. Compare it with the equation used above to calculate resistances to get h=the value of the resultant temperature coefficient.
Formula Used:
${R_t} = {R_i}(1 + \alpha t)$ where ${R_t}$ is the resistance of the wire at temperature $t$ , ${R_i}$ is the resistance of wire at temperature $0^\circ C$ , $\alpha $ is the temperature coefficient of the wire.
Complete Step by Step Solution:
Wire 1 has resistance ${R_1}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _1}$
Similarly, wire 2 has resistance ${R_2}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _2}$
Now let us assume that after the rise in temperature, the temperature of the wires is $t$
Therefore, resistance for wire 1 at this temperature will be ${R_{t(1)}} = {R_1}(1 + {\alpha _1}t)$ (as per the given values)
And, resistance for wire 2 at this temperature will be ${R_{t(2)}} = {R_2}(1 + {\alpha _2}t)$ (as per the given values)
Now these wires are joined therefore their resistances will also be added to get the resultant resistance.
Therefore, ${R_{final}} = {R_1}(1 + {\alpha _1}t) + {R_2}(1 + {\alpha _2}t)$
Further solving it, we get ${R_{final}} = {R_1} + {R_1}{\alpha _1}t + {R_2} + {R_2}{\alpha _2}t$
Rearranging, ${R_{final}} = ({R_1} + {R_2}) + t({R_1}{\alpha _1} + {R_2}{\alpha _2})$
Taking common terms together, \[{R_{final}} = ({R_1} + {R_2})(1 + (\dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}})t)\]
Now compare this equation with the formula we used above, and we get
$\Rightarrow$ ${R_i} = {R_1} + {R_2}$ , $\alpha = \dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}}$
Therefore, option (C) is the correct answer.
Note: We often ignore the step where we have compared the equations and end up solving them further and ending up leaving the question unanswered. Pay attention to what is asked in the question. If it has a direct formula, that’s good but if not, these methods must be used otherwise you will never get the answer. More practice will make you sharper for questions like these.
Formula Used:
${R_t} = {R_i}(1 + \alpha t)$ where ${R_t}$ is the resistance of the wire at temperature $t$ , ${R_i}$ is the resistance of wire at temperature $0^\circ C$ , $\alpha $ is the temperature coefficient of the wire.
Complete Step by Step Solution:
Wire 1 has resistance ${R_1}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _1}$
Similarly, wire 2 has resistance ${R_2}$ at $0^\circ C$ and has temperature coefficient of resistance ${\alpha _2}$
Now let us assume that after the rise in temperature, the temperature of the wires is $t$
Therefore, resistance for wire 1 at this temperature will be ${R_{t(1)}} = {R_1}(1 + {\alpha _1}t)$ (as per the given values)
And, resistance for wire 2 at this temperature will be ${R_{t(2)}} = {R_2}(1 + {\alpha _2}t)$ (as per the given values)
Now these wires are joined therefore their resistances will also be added to get the resultant resistance.
Therefore, ${R_{final}} = {R_1}(1 + {\alpha _1}t) + {R_2}(1 + {\alpha _2}t)$
Further solving it, we get ${R_{final}} = {R_1} + {R_1}{\alpha _1}t + {R_2} + {R_2}{\alpha _2}t$
Rearranging, ${R_{final}} = ({R_1} + {R_2}) + t({R_1}{\alpha _1} + {R_2}{\alpha _2})$
Taking common terms together, \[{R_{final}} = ({R_1} + {R_2})(1 + (\dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}})t)\]
Now compare this equation with the formula we used above, and we get
$\Rightarrow$ ${R_i} = {R_1} + {R_2}$ , $\alpha = \dfrac{{{R_1}{\alpha _1} + {R_2}{\alpha _2}}}{{{R_1} + {R_2}}}$
Therefore, option (C) is the correct answer.
Note: We often ignore the step where we have compared the equations and end up solving them further and ending up leaving the question unanswered. Pay attention to what is asked in the question. If it has a direct formula, that’s good but if not, these methods must be used otherwise you will never get the answer. More practice will make you sharper for questions like these.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Charging and Discharging of Capacitor

Physics Average Value and RMS Value JEE Main 2025

Degree of Dissociation and Its Formula With Solved Example for JEE
