Two wires A and b are of the same materials. Their lengths are in the ratio \[1:2\] and the diameters are in the ratio $2:1$. When stretched by force ${F_A}$ and ${F_B}$ respectively they get equal increase in their lengths. Then the ratio $\dfrac{{{F_A}}}{{{F_B}}}$ should be:
A) $1:2$
B) $1:1$
C) $2:1$
D) $8:1$
Answer
Verified
118.2k+ views
Hint: In order to get the solution of the given question, we need to use the Hooke’s law for both the wires A and B. We can relate the values of force from Hooke’s law as the ratios of length and diameter is given. Finally, after solving the equation framed, we can conclude with the required solution of the given question.
Complete step by step solution:
In the question the ratios, of the length is given as,$\dfrac{{{l_A}}}{{{l_B}}} = \dfrac{1}{2}$ and the ratios of the diameters of the wires are given as,$\dfrac{{{D_A}}}{{{D_B}}} = \dfrac{2}{1}$.
As from the Hooke’s law we know that, $Y = \dfrac{{Fl}}{{\Delta lA}}$
Area,$A = \pi \dfrac{{{D^2}}}{4}$
Now, we need to write Hooke’s law for both the wires.
For wire A,$Y = \dfrac{{{F_A}{l_A}}}{{\Delta l\pi \dfrac{{{D^2}}}{4}}}$
$ \Rightarrow {F_A} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}}$
Similarly, for wire B, the force can be written as ${F_B} = \dfrac{{Y\pi {D_B}^2\Delta l}}{{4{l_B}}}$
Now, we need to take the ratio of forces on both the wires.
Therefore,$\dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}} \times \dfrac{{4{l_B}}}{{Y\pi {D_B}^2\Delta l}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{D_A^2}}{{D_B^2}} \times \dfrac{{{l_B}}}{{{l_A}}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{{2^2}}}{{{1^2}}} \times \dfrac{2}{1}$
$\therefore \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{8}{1}$
Therefore, the required ratio, $\dfrac{{{F_A}}}{{{F_B}}}$=$8:1$
Hence, option (D), i.e. $8:1$ is the correct choice for the given question.
Note: Hooke’s law is also known as the law of elasticity. According to Hooke’s law when the deformation in a body is very small, then the displacement is directly proportional to the force applied to deform the body. We can express Hooke’s law in the form of stress and strain also. The expression of Hooke’s law can also be given as, $F = - kx$ where $'k'$ is a constant. With the help of Hooke’s law we can define elasticity of a material. Hooke’s law also helps us to understand the behavior of a body when it is compressed or stretched.
Complete step by step solution:
In the question the ratios, of the length is given as,$\dfrac{{{l_A}}}{{{l_B}}} = \dfrac{1}{2}$ and the ratios of the diameters of the wires are given as,$\dfrac{{{D_A}}}{{{D_B}}} = \dfrac{2}{1}$.
As from the Hooke’s law we know that, $Y = \dfrac{{Fl}}{{\Delta lA}}$
Area,$A = \pi \dfrac{{{D^2}}}{4}$
Now, we need to write Hooke’s law for both the wires.
For wire A,$Y = \dfrac{{{F_A}{l_A}}}{{\Delta l\pi \dfrac{{{D^2}}}{4}}}$
$ \Rightarrow {F_A} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}}$
Similarly, for wire B, the force can be written as ${F_B} = \dfrac{{Y\pi {D_B}^2\Delta l}}{{4{l_B}}}$
Now, we need to take the ratio of forces on both the wires.
Therefore,$\dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}} \times \dfrac{{4{l_B}}}{{Y\pi {D_B}^2\Delta l}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{D_A^2}}{{D_B^2}} \times \dfrac{{{l_B}}}{{{l_A}}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{{2^2}}}{{{1^2}}} \times \dfrac{2}{1}$
$\therefore \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{8}{1}$
Therefore, the required ratio, $\dfrac{{{F_A}}}{{{F_B}}}$=$8:1$
Hence, option (D), i.e. $8:1$ is the correct choice for the given question.
Note: Hooke’s law is also known as the law of elasticity. According to Hooke’s law when the deformation in a body is very small, then the displacement is directly proportional to the force applied to deform the body. We can express Hooke’s law in the form of stress and strain also. The expression of Hooke’s law can also be given as, $F = - kx$ where $'k'$ is a constant. With the help of Hooke’s law we can define elasticity of a material. Hooke’s law also helps us to understand the behavior of a body when it is compressed or stretched.
Recently Updated Pages
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
If ax by czand b2 ac then the value of yis 1dfrac2xzleft class 9 maths JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs