
Two waves are given by \[{y_1} = \cos \left( {4t - 2x} \right)\] and \[{y_2} = a\sin \left( {4t - 2x + \dfrac{\pi }{4}} \right).\] The phase difference between the two waves is:
A) $\pi /4$
B) $ - \pi /4$
C) $3\pi /4$
D) $\pi /2$
Answer
232.5k+ views
Hint: In this solution, we will be using the general form of the wave equation and the definition of phase. To calculate the phase difference between two waves, they must be represented using the same trigonometric functions. The terms like angular frequency, wave number will be compared to find the total phase difference.
Formula used:
In this solution, we will use the following formula:
$\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$
Complete step by step answer:
We’ve been given the wave function of two waves as \[{y_1} = \cos \left( {4t - 2x} \right)\]and \[{y_2} = a\sin \left( {4t - 2x + \dfrac{\pi }{4}} \right).\]
To calculate the phase difference of these two waves, they must have the same trigonometric function. So, let us change one of the waves, ${y_1}$ in a sine function.
We know that $\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$, so we can alternatively write the wave function of ${y_1}$ as
${y_1} = \sin \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
We can now calculate the phase difference of the two waves using the difference of the variables of the trigonometric functions as the difference of the phase of the second wave and the first wave as:
$\Delta \phi = \left( {4t - 2x + \dfrac{\pi }{4}} \right) - \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
\[ \Rightarrow \Delta \phi = - \pi /4\]
Hence the phase difference of the two waves will be $ - \dfrac{\pi }{4}$ which corresponds to option (B).
Note: We must convert the wave function of both the waves before comparing their individual phase otherwise we will get the wrong answer. Usually, the magnitude of the phase difference is considered when calculating the phase difference of the two waves. By convention, however, the phase difference is calculated taking into account which wave is at a larger displacement. To decide this, we can place the value of $t = 0$ in which case ${y_2}$ will have a larger phase and hence the phase difference will be calculated as the difference of phases of ${y_2}$ and ${y_1}$.
Formula used:
In this solution, we will use the following formula:
$\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$
Complete step by step answer:
We’ve been given the wave function of two waves as \[{y_1} = \cos \left( {4t - 2x} \right)\]and \[{y_2} = a\sin \left( {4t - 2x + \dfrac{\pi }{4}} \right).\]
To calculate the phase difference of these two waves, they must have the same trigonometric function. So, let us change one of the waves, ${y_1}$ in a sine function.
We know that $\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$, so we can alternatively write the wave function of ${y_1}$ as
${y_1} = \sin \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
We can now calculate the phase difference of the two waves using the difference of the variables of the trigonometric functions as the difference of the phase of the second wave and the first wave as:
$\Delta \phi = \left( {4t - 2x + \dfrac{\pi }{4}} \right) - \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
\[ \Rightarrow \Delta \phi = - \pi /4\]
Hence the phase difference of the two waves will be $ - \dfrac{\pi }{4}$ which corresponds to option (B).
Note: We must convert the wave function of both the waves before comparing their individual phase otherwise we will get the wrong answer. Usually, the magnitude of the phase difference is considered when calculating the phase difference of the two waves. By convention, however, the phase difference is calculated taking into account which wave is at a larger displacement. To decide this, we can place the value of $t = 0$ in which case ${y_2}$ will have a larger phase and hence the phase difference will be calculated as the difference of phases of ${y_2}$ and ${y_1}$.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

