Two waves are given by \[{y_1} = \cos \left( {4t - 2x} \right)\] and \[{y_2} = a\sin \left( {4t - 2x + \dfrac{\pi }{4}} \right).\] The phase difference between the two waves is:
A) $\pi /4$
B) $ - \pi /4$
C) $3\pi /4$
D) $\pi /2$
Answer
Verified
119.4k+ views
Hint: In this solution, we will be using the general form of the wave equation and the definition of phase. To calculate the phase difference between two waves, they must be represented using the same trigonometric functions. The terms like angular frequency, wave number will be compared to find the total phase difference.
Formula used:
In this solution, we will use the following formula:
$\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$
Complete step by step answer:
We’ve been given the wave function of two waves as \[{y_1} = \cos \left( {4t - 2x} \right)\]and \[{y_2} = a\sin \left( {4t - 2x + \dfrac{\pi }{4}} \right).\]
To calculate the phase difference of these two waves, they must have the same trigonometric function. So, let us change one of the waves, ${y_1}$ in a sine function.
We know that $\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$, so we can alternatively write the wave function of ${y_1}$ as
${y_1} = \sin \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
We can now calculate the phase difference of the two waves using the difference of the variables of the trigonometric functions as the difference of the phase of the second wave and the first wave as:
$\Delta \phi = \left( {4t - 2x + \dfrac{\pi }{4}} \right) - \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
\[ \Rightarrow \Delta \phi = - \pi /4\]
Hence the phase difference of the two waves will be $ - \dfrac{\pi }{4}$ which corresponds to option (B).
Note: We must convert the wave function of both the waves before comparing their individual phase otherwise we will get the wrong answer. Usually, the magnitude of the phase difference is considered when calculating the phase difference of the two waves. By convention, however, the phase difference is calculated taking into account which wave is at a larger displacement. To decide this, we can place the value of $t = 0$ in which case ${y_2}$ will have a larger phase and hence the phase difference will be calculated as the difference of phases of ${y_2}$ and ${y_1}$.
Formula used:
In this solution, we will use the following formula:
$\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$
Complete step by step answer:
We’ve been given the wave function of two waves as \[{y_1} = \cos \left( {4t - 2x} \right)\]and \[{y_2} = a\sin \left( {4t - 2x + \dfrac{\pi }{4}} \right).\]
To calculate the phase difference of these two waves, they must have the same trigonometric function. So, let us change one of the waves, ${y_1}$ in a sine function.
We know that $\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)$, so we can alternatively write the wave function of ${y_1}$ as
${y_1} = \sin \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
We can now calculate the phase difference of the two waves using the difference of the variables of the trigonometric functions as the difference of the phase of the second wave and the first wave as:
$\Delta \phi = \left( {4t - 2x + \dfrac{\pi }{4}} \right) - \left( {\dfrac{\pi }{2} + 4t - 2x} \right)$
\[ \Rightarrow \Delta \phi = - \pi /4\]
Hence the phase difference of the two waves will be $ - \dfrac{\pi }{4}$ which corresponds to option (B).
Note: We must convert the wave function of both the waves before comparing their individual phase otherwise we will get the wrong answer. Usually, the magnitude of the phase difference is considered when calculating the phase difference of the two waves. By convention, however, the phase difference is calculated taking into account which wave is at a larger displacement. To decide this, we can place the value of $t = 0$ in which case ${y_2}$ will have a larger phase and hence the phase difference will be calculated as the difference of phases of ${y_2}$ and ${y_1}$.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs