Answer
Verified
78.3k+ views
Hint: Use the given force formula below , and calculate the normal force that acts along the line $AB$ formed by the spherical $A$ and the spherical ball $B$ . From the obtained force value calculate the force acts on the point $Q$ due to the floor.
Formula used:
The formula of the force is given by
$F = mg\cos \theta $
Where $F$ is the force exerted, $m$ is the mass of the object, $g$ is the acceleration due to gravity and $\theta $ is the angle made by the force.
Complete step by step solution:
It is given that the
Diameter of the right circular cylinder, $d = 54\,cm$
The radius of the first steel ball, ${r_1} = 12\,cm$
The radius of the second steel ball, ${r_2} = 18\,cm$
The mass of the first steel ball, ${m_1} = 15\,Kg$
The mass of the second steel ball, ${m_2} = 60\,Kg$
The acceleration due to gravity, $g = 10\,m{s^{ - 2}}$
The force exerted at a point $Q$ will be due to both the spherical ball $A$ and the ball $B$ .
Using the formula of the force,
$\Rightarrow {N_{AB}} = {m_1}g\cos \theta $
Substituting the known parameters in the above formula,
$\Rightarrow {N_{AB}} = 15 \times 10 \times \cos {45^ \circ }$
By multiplying the parameters in the above equation,
$\Rightarrow {N_{AB}} = \dfrac{{150}}{{\sqrt 2 }}\,N$
At the point $Q$ , The force formed due to the line $AB$ acts at the angle ${45^ \circ }$ with the perpendicular.
$\Rightarrow {N_Q} = {N_{AB}}\cos {45^ \circ }$
By substituting the value of the force normal to $AB$ in the above equation,
$\Rightarrow {N_Q} = \dfrac{{150}}{{\sqrt 2 }}\cos {45^ \circ }$
By further simplification of the above equation,
$\Rightarrow {N_Q} = 75\,N$
Hence the floor exerted by the floor at $Q$ is $75\,N$.
Note: The angle ${45^ \circ }$ is formed by the joining of the centre of the spherical ball $A$ and $B$ with that of the horizontal. The weight of the ball along with the acceleration due to gravity of $A$ acts perpendicular downwards constituting the normal line $AB$ .
Formula used:
The formula of the force is given by
$F = mg\cos \theta $
Where $F$ is the force exerted, $m$ is the mass of the object, $g$ is the acceleration due to gravity and $\theta $ is the angle made by the force.
Complete step by step solution:
It is given that the
Diameter of the right circular cylinder, $d = 54\,cm$
The radius of the first steel ball, ${r_1} = 12\,cm$
The radius of the second steel ball, ${r_2} = 18\,cm$
The mass of the first steel ball, ${m_1} = 15\,Kg$
The mass of the second steel ball, ${m_2} = 60\,Kg$
The acceleration due to gravity, $g = 10\,m{s^{ - 2}}$
The force exerted at a point $Q$ will be due to both the spherical ball $A$ and the ball $B$ .
Using the formula of the force,
$\Rightarrow {N_{AB}} = {m_1}g\cos \theta $
Substituting the known parameters in the above formula,
$\Rightarrow {N_{AB}} = 15 \times 10 \times \cos {45^ \circ }$
By multiplying the parameters in the above equation,
$\Rightarrow {N_{AB}} = \dfrac{{150}}{{\sqrt 2 }}\,N$
At the point $Q$ , The force formed due to the line $AB$ acts at the angle ${45^ \circ }$ with the perpendicular.
$\Rightarrow {N_Q} = {N_{AB}}\cos {45^ \circ }$
By substituting the value of the force normal to $AB$ in the above equation,
$\Rightarrow {N_Q} = \dfrac{{150}}{{\sqrt 2 }}\cos {45^ \circ }$
By further simplification of the above equation,
$\Rightarrow {N_Q} = 75\,N$
Hence the floor exerted by the floor at $Q$ is $75\,N$.
Note: The angle ${45^ \circ }$ is formed by the joining of the centre of the spherical ball $A$ and $B$ with that of the horizontal. The weight of the ball along with the acceleration due to gravity of $A$ acts perpendicular downwards constituting the normal line $AB$ .
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The voltage of an AC supply varies with time t as V class 12 physics JEE_Main
Chloroform reacts with oxygen in the presence of light class 12 chemistry JEE_Main