
Two spheres of radii in the ratio $1:2$ and densities in the ratio $2:1$ and of the same specific heat, are heated to the same temperature and left in the same surroundings. Their rate of falling temperature will be in the ratio:
A) 2:1
B) 1:1
C) 1:2
D) 1:4
Answer
232.8k+ views
Hint: First of all write the given quantities. Use the formula for rate of cooling i.e., $\dfrac{{{{d\theta }}}}{{{{dt}}}}{{ = }}\dfrac{{{1}}}{{{{ms}}}}\dfrac{{{{dQ}}}}{{{{dt}}}}{{ = }}\dfrac{{{{AK}}}}{{{{ms}}}}$. Now, find the value of mass per unit area and find out the rate of cooling is proportional to which quantity. Finally, rate of cooling is dependent on the radius and density of the sphere by deriving the relation, rate of cooling is proportional to $\dfrac{{{{{r}}_{{2}}}{{ }}{{{\rho }}_{{2}}}}}{{{{{r}}_{{1}}}{{ }}{{{\rho }}_{{1}}}}}$. Then substitute the values and find out the required ratio.
Complete step by step solution:
Given: The ratio of the radius of two spheres is $1:2$
The ratio of the densities of two spheres is $2:1$
Specific heat of both the spheres are same
Both the spheres are heated to same temperature and then both are left in surroundings
To find: The ratio of the rate of cooling for two spheres
Formula for rate of cooling is given by,
$\Rightarrow \dfrac{{{{d\theta }}}}{{{{dt}}}}{{ = }}\dfrac{{{1}}}{{{{ms}}}}\dfrac{{{{dQ}}}}{{{{dt}}}}{{ = }}\dfrac{{{{AK}}}}{{{{ms}}}}$
Formula for mass is given by,
${{mass = volume \times density}}$
Thus, the mass of the sphere is $\dfrac{4}{3}{{\pi }}{{{r}}^3}{{ \times \rho }}$.
Mass per unit area is $\dfrac{{\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}^{{3}}}{{ \times \rho }}}}{{{{4\pi }}{{{r}}^{{2}}}}}{{ = }}\dfrac{{{1}}}{{{3}}}{{r\rho }}$.
So, the rate of cooling is proportional to $\dfrac{{{1}}}{{{{r\rho }}}}$.
Thus, the ratio of cooling for two sphere is $\dfrac{{{{{r}}_{{2}}}{{ }}{{{\rho }}_{{2}}}}}{{{{{r}}_{{1}}}{{ }}{{{\rho }}_{{1}}}}}$.
On substituting the values, we get
Hence, the ratio of cooling for two sphere is $\dfrac{{{{2 \times 1 }}}}{{{{1 \times 2 }}}}{{ = }}\dfrac{{{1}}}{{{1}}}$.
Thus, the ratio of cooling for two spheres is $1:1$.
Therefore, option (B) is the correct choice.
Note: Newton's Law of Cooling states that the rate of change of the temperature of an object is directly proportional to the difference between its own temperature and the temperature of its surroundings. The drawback of Newton’s law of cooling is that the temperature of surroundings should be constant during the cooling of the body.
Complete step by step solution:
Given: The ratio of the radius of two spheres is $1:2$
The ratio of the densities of two spheres is $2:1$
Specific heat of both the spheres are same
Both the spheres are heated to same temperature and then both are left in surroundings
To find: The ratio of the rate of cooling for two spheres
Formula for rate of cooling is given by,
$\Rightarrow \dfrac{{{{d\theta }}}}{{{{dt}}}}{{ = }}\dfrac{{{1}}}{{{{ms}}}}\dfrac{{{{dQ}}}}{{{{dt}}}}{{ = }}\dfrac{{{{AK}}}}{{{{ms}}}}$
Formula for mass is given by,
${{mass = volume \times density}}$
Thus, the mass of the sphere is $\dfrac{4}{3}{{\pi }}{{{r}}^3}{{ \times \rho }}$.
Mass per unit area is $\dfrac{{\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}^{{3}}}{{ \times \rho }}}}{{{{4\pi }}{{{r}}^{{2}}}}}{{ = }}\dfrac{{{1}}}{{{3}}}{{r\rho }}$.
So, the rate of cooling is proportional to $\dfrac{{{1}}}{{{{r\rho }}}}$.
Thus, the ratio of cooling for two sphere is $\dfrac{{{{{r}}_{{2}}}{{ }}{{{\rho }}_{{2}}}}}{{{{{r}}_{{1}}}{{ }}{{{\rho }}_{{1}}}}}$.
On substituting the values, we get
Hence, the ratio of cooling for two sphere is $\dfrac{{{{2 \times 1 }}}}{{{{1 \times 2 }}}}{{ = }}\dfrac{{{1}}}{{{1}}}$.
Thus, the ratio of cooling for two spheres is $1:1$.
Therefore, option (B) is the correct choice.
Note: Newton's Law of Cooling states that the rate of change of the temperature of an object is directly proportional to the difference between its own temperature and the temperature of its surroundings. The drawback of Newton’s law of cooling is that the temperature of surroundings should be constant during the cooling of the body.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

