
Two resistors of resistances ${R_1} = 100 \pm 3$ ohm and ${R_2} = 200 \pm 4$ ohm are connected in parallel. The equivalent combination of the parallel connection is:
A) $66.7 \pm 1.8$ohm
B) $66.7 \pm 4$ohm
C) $66.7 \pm 3$ohm
D) $66.7 \pm 7$ohm
Answer
219.9k+ views
Hint: In parallel combination of resistances the equivalent resistance is given as the ratio of the product of the two resistances and the error part will be solved using the formula given below:
$\dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(Parallel combination formula)
$\dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$ ($R_1$ and $R_2$ are the two resistances given to us, we have differentiated the parallel combination formula)
Using above relations we will find the parallel combination of two resistances and their error part.
Complete step by step solution:
Let’s have some discussion on parallel combination first and then we will proceed for the calculation part:
In parallel, the combination of resistors voltage remains the same in all the branches of the circuit be it AC or DC circuit. Current will have different values in all the branches and the magnitude of the current will depend on the impedance a particular branch has.
Let’s come to the calculation part now:
We will solve the magnitude part first:
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(We will substitute the value of both the resistances in the formula)
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{100}} + \dfrac{1}{{200}}$(on taking LCM)
$ \Rightarrow R = \dfrac{{100 \times 200}}{{300}} $
$ \Rightarrow R = 66.67ohm $
(Value of magnitude part of the parallel combination)
Now, we will solve the error part of the two parallel resistors:
$ \Rightarrow \dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$(We will substitute the numerical values in the given equation)
$ \Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{{{100}^2}}} + \dfrac{4}{{{{200}^2}}} $
$\Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{10000}} + \dfrac{4}{{40000}} $
(The error part was 3 and 4 respectively)
On multiplying $R_2$ term on RHS
$ \Rightarrow dR = {(66.67)^2}[{\dfrac{3}{10000} - \dfrac{4}{40000}}] $
$ \Rightarrow dR = ({(66.67)^2} \times .0003) - (.0004 \times {(66.67)^2}) $
(After simplification our equation becomes)
$dR = 1.78$ or $1.8$
We got the error value as 1.8 ohm.
Therefore, option (A) is correct.
Note: If the resistors are added in series combination instead of parallel then we would have added the magnitude of the resistors directly without doing any reciprocal of the magnitude. For the error part; we would have added the resistance value in the error part too again directly.
$\dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(Parallel combination formula)
$\dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$ ($R_1$ and $R_2$ are the two resistances given to us, we have differentiated the parallel combination formula)
Using above relations we will find the parallel combination of two resistances and their error part.
Complete step by step solution:
Let’s have some discussion on parallel combination first and then we will proceed for the calculation part:
In parallel, the combination of resistors voltage remains the same in all the branches of the circuit be it AC or DC circuit. Current will have different values in all the branches and the magnitude of the current will depend on the impedance a particular branch has.
Let’s come to the calculation part now:
We will solve the magnitude part first:
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(We will substitute the value of both the resistances in the formula)
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{100}} + \dfrac{1}{{200}}$(on taking LCM)
$ \Rightarrow R = \dfrac{{100 \times 200}}{{300}} $
$ \Rightarrow R = 66.67ohm $
(Value of magnitude part of the parallel combination)
Now, we will solve the error part of the two parallel resistors:
$ \Rightarrow \dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$(We will substitute the numerical values in the given equation)
$ \Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{{{100}^2}}} + \dfrac{4}{{{{200}^2}}} $
$\Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{10000}} + \dfrac{4}{{40000}} $
(The error part was 3 and 4 respectively)
On multiplying $R_2$ term on RHS
$ \Rightarrow dR = {(66.67)^2}[{\dfrac{3}{10000} - \dfrac{4}{40000}}] $
$ \Rightarrow dR = ({(66.67)^2} \times .0003) - (.0004 \times {(66.67)^2}) $
(After simplification our equation becomes)
$dR = 1.78$ or $1.8$
We got the error value as 1.8 ohm.
Therefore, option (A) is correct.
Note: If the resistors are added in series combination instead of parallel then we would have added the magnitude of the resistors directly without doing any reciprocal of the magnitude. For the error part; we would have added the resistance value in the error part too again directly.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

