
Two radioactive substances A and B have decay constants $5\lambda $ and $\lambda $ respectively. At $t = 0$ they have the same number of nuclei. The ratio of the number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval.
(A) $\dfrac{1}{{4\lambda }}$
(B) $4\lambda $
(C) $2\lambda $
(D) $\dfrac{1}{{2\lambda }}$
Answer
232.8k+ views
Hint: Radioactivity is the phenomenon of spontaneous disintegration of the atomic nucleus by the emission of highly penetrating radiations. The law of radioactive disintegration states that the rate of disintegration at any instant is directly proportional to the number of atoms of the element present at that instant.
Formula used
$N = {N_0}{e^{ - \lambda t}}$
Where, $N$ stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms, $\lambda $is called the decay constant or the disintegration constant and $t$ stands for the time
Complete step by step answer:
According to the law of radioactive disintegration, we can write the decay equation as
$N = {N_0}{e^{ - \lambda t}}$
Let the number of atoms of A be${N_A}$, its decay constant is given by $5\lambda $
Then we can write that the number of atoms of A is
${N_A} = {N_0}{e^{ - 5\lambda t}}$
Let the number of atoms of B be${N_B}$, its decay constant is given by $\lambda $
Then we can write the number of atoms of B as
${N_B} = {N_0}{e^{ - \lambda t}}$
Taking the ratio of ${N_A}$and${N_B}$, we get
$\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{{{N_0}{e^{ - 5\lambda t}}}}{{{N_0}{e^{ - \lambda t}}}} = {e^{ - 4\lambda t}}$
In the question, it is given that $\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{1}{{{e^2}}} = {e^{ - 2}}$
This means that, ${e^{ - 4\lambda t}} = {e^{ - 2}}$
$\Rightarrow 4\lambda t = 2$
$\Rightarrow t = \dfrac{2}{{4\lambda }} = \dfrac{1}{{2\lambda }} $
So, the ratio of number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval $\dfrac{1}{{2\lambda }}$
The answer is Option (D): $\dfrac{1}{{2\lambda }}$
Note
The disintegration constant represents the probability of an atom to disintegrate. The negative sign in the disintegration constant indicates that the number of atoms decreases with the increase in time. The number of un-disintegrated atoms of a radioactive substance decreases exponentially. $N$ and ${N_0}$ can be replaced by the mass of the material. The S.I. The unit of radioactivity is Becquerel (Bq).
Formula used
$N = {N_0}{e^{ - \lambda t}}$
Where, $N$ stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms, $\lambda $is called the decay constant or the disintegration constant and $t$ stands for the time
Complete step by step answer:
According to the law of radioactive disintegration, we can write the decay equation as
$N = {N_0}{e^{ - \lambda t}}$
Let the number of atoms of A be${N_A}$, its decay constant is given by $5\lambda $
Then we can write that the number of atoms of A is
${N_A} = {N_0}{e^{ - 5\lambda t}}$
Let the number of atoms of B be${N_B}$, its decay constant is given by $\lambda $
Then we can write the number of atoms of B as
${N_B} = {N_0}{e^{ - \lambda t}}$
Taking the ratio of ${N_A}$and${N_B}$, we get
$\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{{{N_0}{e^{ - 5\lambda t}}}}{{{N_0}{e^{ - \lambda t}}}} = {e^{ - 4\lambda t}}$
In the question, it is given that $\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{1}{{{e^2}}} = {e^{ - 2}}$
This means that, ${e^{ - 4\lambda t}} = {e^{ - 2}}$
$\Rightarrow 4\lambda t = 2$
$\Rightarrow t = \dfrac{2}{{4\lambda }} = \dfrac{1}{{2\lambda }} $
So, the ratio of number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval $\dfrac{1}{{2\lambda }}$
The answer is Option (D): $\dfrac{1}{{2\lambda }}$
Note
The disintegration constant represents the probability of an atom to disintegrate. The negative sign in the disintegration constant indicates that the number of atoms decreases with the increase in time. The number of un-disintegrated atoms of a radioactive substance decreases exponentially. $N$ and ${N_0}$ can be replaced by the mass of the material. The S.I. The unit of radioactivity is Becquerel (Bq).
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

