Two radioactive substances A and B have decay constants $5\lambda $ and $\lambda $ respectively. At $t = 0$ they have the same number of nuclei. The ratio of the number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval.
(A) $\dfrac{1}{{4\lambda }}$
(B) $4\lambda $
(C) $2\lambda $
(D) $\dfrac{1}{{2\lambda }}$
Answer
Verified
117.3k+ views
Hint: Radioactivity is the phenomenon of spontaneous disintegration of the atomic nucleus by the emission of highly penetrating radiations. The law of radioactive disintegration states that the rate of disintegration at any instant is directly proportional to the number of atoms of the element present at that instant.
Formula used
$N = {N_0}{e^{ - \lambda t}}$
Where, $N$ stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms, $\lambda $is called the decay constant or the disintegration constant and $t$ stands for the time
Complete step by step answer:
According to the law of radioactive disintegration, we can write the decay equation as
$N = {N_0}{e^{ - \lambda t}}$
Let the number of atoms of A be${N_A}$, its decay constant is given by $5\lambda $
Then we can write that the number of atoms of A is
${N_A} = {N_0}{e^{ - 5\lambda t}}$
Let the number of atoms of B be${N_B}$, its decay constant is given by $\lambda $
Then we can write the number of atoms of B as
${N_B} = {N_0}{e^{ - \lambda t}}$
Taking the ratio of ${N_A}$and${N_B}$, we get
$\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{{{N_0}{e^{ - 5\lambda t}}}}{{{N_0}{e^{ - \lambda t}}}} = {e^{ - 4\lambda t}}$
In the question, it is given that $\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{1}{{{e^2}}} = {e^{ - 2}}$
This means that, ${e^{ - 4\lambda t}} = {e^{ - 2}}$
$\Rightarrow 4\lambda t = 2$
$\Rightarrow t = \dfrac{2}{{4\lambda }} = \dfrac{1}{{2\lambda }} $
So, the ratio of number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval $\dfrac{1}{{2\lambda }}$
The answer is Option (D): $\dfrac{1}{{2\lambda }}$
Note
The disintegration constant represents the probability of an atom to disintegrate. The negative sign in the disintegration constant indicates that the number of atoms decreases with the increase in time. The number of un-disintegrated atoms of a radioactive substance decreases exponentially. $N$ and ${N_0}$ can be replaced by the mass of the material. The S.I. The unit of radioactivity is Becquerel (Bq).
Formula used
$N = {N_0}{e^{ - \lambda t}}$
Where, $N$ stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms, $\lambda $is called the decay constant or the disintegration constant and $t$ stands for the time
Complete step by step answer:
According to the law of radioactive disintegration, we can write the decay equation as
$N = {N_0}{e^{ - \lambda t}}$
Let the number of atoms of A be${N_A}$, its decay constant is given by $5\lambda $
Then we can write that the number of atoms of A is
${N_A} = {N_0}{e^{ - 5\lambda t}}$
Let the number of atoms of B be${N_B}$, its decay constant is given by $\lambda $
Then we can write the number of atoms of B as
${N_B} = {N_0}{e^{ - \lambda t}}$
Taking the ratio of ${N_A}$and${N_B}$, we get
$\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{{{N_0}{e^{ - 5\lambda t}}}}{{{N_0}{e^{ - \lambda t}}}} = {e^{ - 4\lambda t}}$
In the question, it is given that $\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{1}{{{e^2}}} = {e^{ - 2}}$
This means that, ${e^{ - 4\lambda t}} = {e^{ - 2}}$
$\Rightarrow 4\lambda t = 2$
$\Rightarrow t = \dfrac{2}{{4\lambda }} = \dfrac{1}{{2\lambda }} $
So, the ratio of number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval $\dfrac{1}{{2\lambda }}$
The answer is Option (D): $\dfrac{1}{{2\lambda }}$
Note
The disintegration constant represents the probability of an atom to disintegrate. The negative sign in the disintegration constant indicates that the number of atoms decreases with the increase in time. The number of un-disintegrated atoms of a radioactive substance decreases exponentially. $N$ and ${N_0}$ can be replaced by the mass of the material. The S.I. The unit of radioactivity is Becquerel (Bq).
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE