
Two points of a rod move with velocities 3 v & v perpendicular to the rod and in the same direction, separated by a distance 'r'. The angular velocity of rod is:
A. $\omega = \dfrac{{3v}}{r}$
B. $\omega = \dfrac{{4v}}{r}$
C. $\omega = \dfrac{{5v}}{r}$
D. $\omega = \dfrac{{2v}}{r}$
Answer
161.4k+ views
Hint: We must apply the angular velocity formula in order to answer this question. Let's first discuss angular velocity, the vector measure of rotation rate, which describes the rate at which an item rotates or revolves in relation to another point.
Formula used:
$v = r\omega $
Complete answer:
A rotating object's point continually changes direction, making it challenging to determine the angular velocity direction. The rotating object's axis is the only location where its direction is fixed. The Right Hand Rule is used to identify the direction of angular velocity using the axis of rotation.

In the given diagram we can see that the upper point of the rod A is moving with velocity 3v which is perpendicular to the rod. Also, at point B the velocity is given v perpendicular to rod. Let us assume the distance between point A and the point B is r and the distance between point B and point O is x. Hence, the total length of rod will be r+x,
Let us assume the angular velocity of rod about the point O is$\omega $. Formula we will use will be
$v = r\omega $
For point A we can write the equation as,
$3v = \left(r + x\right)\omega $-----(1)
Also, for point B we can write as
$v = x\omega $--------(2)
Now, subtracting equation 2 from 1 we get,
$2v = r\omega $
$ \Rightarrow \omega = \dfrac{{2v}}{r}$
Hence, option D is correct.
Note: The obtained linear velocity turns out to be proportional to the radius of the rotating particle's circle. Every single particle in a revolving body has the same angular velocity. We may deduce the relationship between any other linear and rotational variable from this relationship. For instance, the radius times the angular acceleration is also equal to the linear acceleration.
Formula used:
$v = r\omega $
Complete answer:
A rotating object's point continually changes direction, making it challenging to determine the angular velocity direction. The rotating object's axis is the only location where its direction is fixed. The Right Hand Rule is used to identify the direction of angular velocity using the axis of rotation.

In the given diagram we can see that the upper point of the rod A is moving with velocity 3v which is perpendicular to the rod. Also, at point B the velocity is given v perpendicular to rod. Let us assume the distance between point A and the point B is r and the distance between point B and point O is x. Hence, the total length of rod will be r+x,
Let us assume the angular velocity of rod about the point O is$\omega $. Formula we will use will be
$v = r\omega $
For point A we can write the equation as,
$3v = \left(r + x\right)\omega $-----(1)
Also, for point B we can write as
$v = x\omega $--------(2)
Now, subtracting equation 2 from 1 we get,
$2v = r\omega $
$ \Rightarrow \omega = \dfrac{{2v}}{r}$
Hence, option D is correct.
Note: The obtained linear velocity turns out to be proportional to the radius of the rotating particle's circle. Every single particle in a revolving body has the same angular velocity. We may deduce the relationship between any other linear and rotational variable from this relationship. For instance, the radius times the angular acceleration is also equal to the linear acceleration.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
