
Two pi and half sigma bonds are present in:
(A) $N_2^ + $
(B) ${N_2}$
(C) $O_2^ + $
(D) ${O_2}$
Answer
216.3k+ views
Hint: First write down the electronic configurations of the given molecules in the option and see the number of electrons in their bonding and antibonding orbitals. Accordingly, see how many sigma and pi bonds each of the molecules can form. Also, the molecule which has two pi and half sigma bonds will have a bond order of 2.5
Complete step by step solution:
-We all know that bond order basically gives us the number of bonds or the number of electron pairs present between two atoms in a molecule. Like if 2 atoms in a molecule are bonded via a single bond, their bond order will be one; if via a triple bond. Their bond order will be 3 and so on.
Similarly, we will now check for the number of bonds present in the molecule we are talking about in the question. The question says that the molecule has two pi and half sigma bond hence the bond order of the molecule will be 2.5
The Molecular Orbital Theory describes the bond order to be basically the difference between the number of bonding and antibonding electrons, divided by two. Mathematically it can be written as:
$BO =$ $\dfrac{1}{2}$ (Bonding electrons – Anti bonding electrons)--------(1)
-Now coming back to what the question is asking, to find the molecule we need to see which of them has a bond order of 2.5 and forms half sigma and 2 pi bonds. So, we will now write down the electronic configuration of all the given molecules and calculate their bond order to verify.
-For (A) $N_2^ + $: The total number of electrons in it are = 13
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^1}$
From this configuration we can tell that the 2 electrons in $\left( {\pi 2{p_x}} \right)$ form a pi bond and the 2 electrons in $\left( {\pi 2{p_y}} \right)$ also form a pi bond, while the 1 electron in $\left( {\sigma 2{p_z}} \right)$ forms a half sigma bond. In total, the ${N_2}$ molecule forms half sigma and 2 pi bonds.
Here we can see that: Number of bonding electrons = 9 and the number of antibonding electrons = 4. Calculate the bond order using equation (1):
$BO =$ $\dfrac{1}{2}(9 - 4)$
$=$ $\dfrac{1}{2} \times 5$
$= 2.5$
So, the bond order for $N_2^ + $ is $2.5$ and it also forms half sigma and $2$ pi bonds.
-For (B) ${N_2}$: The total number of electrons = 14
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^2}$
From this configuration we can tell that the 2 electrons in $\left( {\pi 2{p_x}} \right)$ form a pi bond and the 2 electrons in $\left( {\pi 2{p_y}} \right)$ also form a pi bond, while the 2 electrons in $\left( {\sigma 2{p_z}} \right)$ form a sigma bond. In total the ${N_2}$ molecule forms 1 sigma and 2 pi bonds.
-For (C) $O_2^ + $: total number of electrons = 15
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^2}$ ${\pi ^*}$$2$${p_x^1}$
In the above configuration we can see that there is only one electron in the $({\pi ^*}2{p_x})$ orbital so it will cancel out one electron from the $(\pi 2{p_y})$ orbital. Then the 2 electron in the $(\sigma 2{p_z})$ orbital will form a sigma bond, the 2 electrons in $(\pi 2{p_x})$ will form 1 pi bond and the 1 electron in the $(\pi 2{p_y})$ will also form half of a pi bond. So, in total this molecule forms 1 sigma and 1.5 pi bonds.
-For ${O_2}$: total number of electrons = 16
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^2}$ ${\pi ^*}$$2$${p_x^1}$ ${\pi ^*}$$2$${p_y^1}$
In the above configuration we can see that there are two electrons in the $({\pi ^*}2{p_x})$ and $({\pi ^*}2{p_y})$ orbitals so they will cancel out the two electrons from the $(\pi 2{p_y})$ orbital. Then the 2 electrons in the $(\sigma 2{p_z})$ orbital will form a sigma bond and the 2 electrons in $(\pi 2{p_x})$ will form 1 pi bond. So, in total this molecule forms 1 sigma and 1 pi bond.
-From the above discussion we can now conclude that the only molecule in the options which forms half sigma and 2 pi bonds along with bond order 2.5 is $N_2^ + $.
Hence the correct option is: (A) $N_2^ + $.
Note: The electrons should always be filled according to the increasing energy level of the molecular orbitals as shown below:
$\sigma 1s,{\sigma ^*}1s,\sigma 2s,{\sigma ^*}2s,\sigma 2{p_z},\pi 2{p_x} = \pi 2{p_y},{\pi ^*}2{p_x} = {\pi ^*}2{p_y},{\sigma ^*}2{p_z}$ and so on.
Also, the MOT uses the concept of bond order to explain the existence of a molecule on the basis of bond order, but this method can neither be feasible nor appropriate to explain about the molecular existence of polyatomic molecules. Also, MOT does not say anything about the geometry and shape of the molecule. So, this theory also has some drawbacks.
Complete step by step solution:
-We all know that bond order basically gives us the number of bonds or the number of electron pairs present between two atoms in a molecule. Like if 2 atoms in a molecule are bonded via a single bond, their bond order will be one; if via a triple bond. Their bond order will be 3 and so on.
Similarly, we will now check for the number of bonds present in the molecule we are talking about in the question. The question says that the molecule has two pi and half sigma bond hence the bond order of the molecule will be 2.5
The Molecular Orbital Theory describes the bond order to be basically the difference between the number of bonding and antibonding electrons, divided by two. Mathematically it can be written as:
$BO =$ $\dfrac{1}{2}$ (Bonding electrons – Anti bonding electrons)--------(1)
-Now coming back to what the question is asking, to find the molecule we need to see which of them has a bond order of 2.5 and forms half sigma and 2 pi bonds. So, we will now write down the electronic configuration of all the given molecules and calculate their bond order to verify.
-For (A) $N_2^ + $: The total number of electrons in it are = 13
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^1}$
From this configuration we can tell that the 2 electrons in $\left( {\pi 2{p_x}} \right)$ form a pi bond and the 2 electrons in $\left( {\pi 2{p_y}} \right)$ also form a pi bond, while the 1 electron in $\left( {\sigma 2{p_z}} \right)$ forms a half sigma bond. In total, the ${N_2}$ molecule forms half sigma and 2 pi bonds.
Here we can see that: Number of bonding electrons = 9 and the number of antibonding electrons = 4. Calculate the bond order using equation (1):
$BO =$ $\dfrac{1}{2}(9 - 4)$
$=$ $\dfrac{1}{2} \times 5$
$= 2.5$
So, the bond order for $N_2^ + $ is $2.5$ and it also forms half sigma and $2$ pi bonds.
-For (B) ${N_2}$: The total number of electrons = 14
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^2}$
From this configuration we can tell that the 2 electrons in $\left( {\pi 2{p_x}} \right)$ form a pi bond and the 2 electrons in $\left( {\pi 2{p_y}} \right)$ also form a pi bond, while the 2 electrons in $\left( {\sigma 2{p_z}} \right)$ form a sigma bond. In total the ${N_2}$ molecule forms 1 sigma and 2 pi bonds.
-For (C) $O_2^ + $: total number of electrons = 15
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^2}$ ${\pi ^*}$$2$${p_x^1}$
In the above configuration we can see that there is only one electron in the $({\pi ^*}2{p_x})$ orbital so it will cancel out one electron from the $(\pi 2{p_y})$ orbital. Then the 2 electron in the $(\sigma 2{p_z})$ orbital will form a sigma bond, the 2 electrons in $(\pi 2{p_x})$ will form 1 pi bond and the 1 electron in the $(\pi 2{p_y})$ will also form half of a pi bond. So, in total this molecule forms 1 sigma and 1.5 pi bonds.
-For ${O_2}$: total number of electrons = 16
Configuration: ${\sigma }$${1}$${s^2}$ ${\sigma ^*}$${1}$${s^2}$ ${\sigma}$${2}$${s^2}$ ${\sigma ^*}{2}{s^2}$ ${\pi}$${2}$${p_x^2}$ ${\pi}$${2}$${p_y^2}$ ${\sigma}$${2}$${p_z^2}$ ${\pi ^*}$$2$${p_x^1}$ ${\pi ^*}$$2$${p_y^1}$
In the above configuration we can see that there are two electrons in the $({\pi ^*}2{p_x})$ and $({\pi ^*}2{p_y})$ orbitals so they will cancel out the two electrons from the $(\pi 2{p_y})$ orbital. Then the 2 electrons in the $(\sigma 2{p_z})$ orbital will form a sigma bond and the 2 electrons in $(\pi 2{p_x})$ will form 1 pi bond. So, in total this molecule forms 1 sigma and 1 pi bond.
-From the above discussion we can now conclude that the only molecule in the options which forms half sigma and 2 pi bonds along with bond order 2.5 is $N_2^ + $.
Hence the correct option is: (A) $N_2^ + $.
Note: The electrons should always be filled according to the increasing energy level of the molecular orbitals as shown below:
$\sigma 1s,{\sigma ^*}1s,\sigma 2s,{\sigma ^*}2s,\sigma 2{p_z},\pi 2{p_x} = \pi 2{p_y},{\pi ^*}2{p_x} = {\pi ^*}2{p_y},{\sigma ^*}2{p_z}$ and so on.
Also, the MOT uses the concept of bond order to explain the existence of a molecule on the basis of bond order, but this method can neither be feasible nor appropriate to explain about the molecular existence of polyatomic molecules. Also, MOT does not say anything about the geometry and shape of the molecule. So, this theory also has some drawbacks.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

