Answer
Verified
79.8k+ views
Hint: Resolve the velocities of the particles in x and y coordinates.
Evaluate the relative velocity. From the expression of relative velocity, predict the curve.
Complete step by step solution:
Let $\overrightarrow {{u_1}} \& \overrightarrow {{u_2}} $ be the initial velocities of particles and let the particles make angles of ${\theta _1}\& {\theta _2}$ with the horizontal respectively.
After time t, their velocities will be $\overrightarrow {{v_1}} = ({u_1}\cos {\theta _1})\widehat i + ({u_1}\cos {\theta _1} - gt)\widehat j$
And similarly $\,\overrightarrow {{v_2}} = ({u_2}\cos {\theta _2})\widehat i + ({u_2}\cos {\theta _2} - gt)\widehat j$
Relative velocity $\overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - gt - {u_2}\sin {\theta _2} + gt)\widehat j$
$ \Rightarrow \overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - {u_2}\sin {\theta _2})\widehat j$
It is clear that relative velocity is independent of time and any other possible variables, this means that relative velocity of a projectile is constant.
Therefore, the path seen by a particle is a straight line making an angle with the horizontal.
Therefore, option (D) is correct.
Note: Curves of common equations are as follows:
Linear – straight line
Quadratic – parabola
In questions like these, try to express the equation in terms of power of t. The power of t decides the shape of the curve.
Evaluate the relative velocity. From the expression of relative velocity, predict the curve.
Complete step by step solution:
Let $\overrightarrow {{u_1}} \& \overrightarrow {{u_2}} $ be the initial velocities of particles and let the particles make angles of ${\theta _1}\& {\theta _2}$ with the horizontal respectively.
After time t, their velocities will be $\overrightarrow {{v_1}} = ({u_1}\cos {\theta _1})\widehat i + ({u_1}\cos {\theta _1} - gt)\widehat j$
And similarly $\,\overrightarrow {{v_2}} = ({u_2}\cos {\theta _2})\widehat i + ({u_2}\cos {\theta _2} - gt)\widehat j$
Relative velocity $\overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - gt - {u_2}\sin {\theta _2} + gt)\widehat j$
$ \Rightarrow \overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - {u_2}\sin {\theta _2})\widehat j$
It is clear that relative velocity is independent of time and any other possible variables, this means that relative velocity of a projectile is constant.
Therefore, the path seen by a particle is a straight line making an angle with the horizontal.
Therefore, option (D) is correct.
Note: Curves of common equations are as follows:
Linear – straight line
Quadratic – parabola
In questions like these, try to express the equation in terms of power of t. The power of t decides the shape of the curve.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main