
Two organ pipes are the same size. Hydrogen and oxygen gases are filled in them. Taking the elasticity of gases to be same, the ratio of their fundamental frequencies will be:
A) 1:4
B) 4:1
C) 8:1
D) 16:1
Answer
126.3k+ views
Hint: The speed of sound in an ideal gas is given by the relationship
v = $\sqrt {\dfrac{\gamma RT}{{M}}}$ where R= gas constant, T= absolute temperature, M= molecular mass and $ \gamma$= adiabatic gas constant.
Complete step by step solution:
Velocity of sound gas is v
$v=\sqrt{\dfrac{\gamma RT}{M}}$ Where M is the molecular mass of the gas
Keeping T and $\gamma $ to be constant.
\[\begin{align}
& \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=\sqrt{\dfrac{M_{{0}_{2}}}{M_{{H}_{2}}}} \\
& \Rightarrow \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=\sqrt{\dfrac{32}{2}} \\
& \Rightarrow \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=\sqrt{16} \\
& \therefore \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=4 \\
& \\
\end{align}\]
Now, fundamental frequency $v$ = $\dfrac{v}{{2L}}$
For the same length of the pipes $\text{frequency }\!\!\propto\!\!\text{ v}$
Therefore ratio of frequency will be same as of the ratio of velocity
\[\begin{align}
& \Rightarrow \dfrac{V_{H_2}}{V_{O_2}} = 4 \\
& \therefore \dfrac{\text{frequency }{{\text{H}}_{\text{2}}}}{\text{frequency }{{\text{O}}_{\text{2}}}}=\dfrac{4}{1} \\
\end{align}\]
So option B is correct.
Additional Information: The organ pipe is a musical instrument used to produce musical sound by blowing air into the pipe. Limb pipes are of two types (a) closed organ pipes, closed at one end (b) open organ pipes, open at both ends.
Closed Organ Pipe: A hollow wooden or metal tube that is used to produce sound is called an organ pipe. If both ends of the pipe are open, it is called an open organ pipe; The flute is an example pipe but if one end is closed then this organ pipe is closed. The closed end is constrained to be a node of the wave and the open end is definitely an antinode. This makes the fundamental mode such that the wavelength is four times the length of the air column. The closure of the closed end prevents the column from producing symmetry.
Open Organ Pipe: An open pipe is one that is opened at both ends. When air is blown into the pipe from one end, a wave travels through the tube to the next end from where it is reflected.
Note: Musical instruments such as flute, clarinet etc. are based on the principle of vibration of air columns. Due to the superposition of the incident wave and the reflected wave, longitudinal stationary waves are formed in the pipe.
v = $\sqrt {\dfrac{\gamma RT}{{M}}}$ where R= gas constant, T= absolute temperature, M= molecular mass and $ \gamma$= adiabatic gas constant.
Complete step by step solution:
Velocity of sound gas is v
$v=\sqrt{\dfrac{\gamma RT}{M}}$ Where M is the molecular mass of the gas
Keeping T and $\gamma $ to be constant.
\[\begin{align}
& \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=\sqrt{\dfrac{M_{{0}_{2}}}{M_{{H}_{2}}}} \\
& \Rightarrow \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=\sqrt{\dfrac{32}{2}} \\
& \Rightarrow \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=\sqrt{16} \\
& \therefore \dfrac{V_{{H}_{2}}}{V_{{O}_{2}}}=4 \\
& \\
\end{align}\]
Now, fundamental frequency $v$ = $\dfrac{v}{{2L}}$
For the same length of the pipes $\text{frequency }\!\!\propto\!\!\text{ v}$
Therefore ratio of frequency will be same as of the ratio of velocity
\[\begin{align}
& \Rightarrow \dfrac{V_{H_2}}{V_{O_2}} = 4 \\
& \therefore \dfrac{\text{frequency }{{\text{H}}_{\text{2}}}}{\text{frequency }{{\text{O}}_{\text{2}}}}=\dfrac{4}{1} \\
\end{align}\]
So option B is correct.
Additional Information: The organ pipe is a musical instrument used to produce musical sound by blowing air into the pipe. Limb pipes are of two types (a) closed organ pipes, closed at one end (b) open organ pipes, open at both ends.
Closed Organ Pipe: A hollow wooden or metal tube that is used to produce sound is called an organ pipe. If both ends of the pipe are open, it is called an open organ pipe; The flute is an example pipe but if one end is closed then this organ pipe is closed. The closed end is constrained to be a node of the wave and the open end is definitely an antinode. This makes the fundamental mode such that the wavelength is four times the length of the air column. The closure of the closed end prevents the column from producing symmetry.
Open Organ Pipe: An open pipe is one that is opened at both ends. When air is blown into the pipe from one end, a wave travels through the tube to the next end from where it is reflected.
Note: Musical instruments such as flute, clarinet etc. are based on the principle of vibration of air columns. Due to the superposition of the incident wave and the reflected wave, longitudinal stationary waves are formed in the pipe.
Recently Updated Pages
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
