Answer
Verified
87.3k+ views
Hint: We know that the external electric field is a fundamental requirement for electrospinning and an important factor governing the fibre diameter. Melt-electrospinning involves the stretching of predominantly non conducting liquid under the influence of an applied electric field. On Earth, flowing of liquid metal in the outer core of the planet generates electric currents. The rotation of Earth on its axis causes these electric currents to form a magnetic field which extends around the planet. The magnetic field is extremely important to sustaining life on Earth.
Complete step by step answer
We know that the electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field is radially outward from a positive charge and radially in toward a negative point charge.
The space around an electric charge in which its influence can be felt is known as the electric field. The electric field Intensity at a point is the force experienced by a unit positive charge placed at that point. Electric Field Intensity is a vector quantity.
Electric fields (e-fields) are an important tool in understanding how electricity begins and continues to flow. Electric fields describe the pulling or pushing force in a space between charges. The electric fields of single charges. A negative charge has an inward electric field because it attracts positive charges.
$E_{1}=\dfrac{\lambda_{1}}{2 \pi \varepsilon_{0} x}$ and ${{E}_{1}}=\dfrac{{{\lambda }_{q}}}{2\pi {{\varepsilon }_{0}}y}$
$\dfrac{E_{1}}{E_{2}}=\left(\dfrac{\lambda_{1}}{\lambda_{2}}\right)\left(\dfrac{y}{x}\right)$
$\dfrac{1}{\tan \alpha}=\left(\dfrac{\lambda_{1}}{\lambda_{2}}\right) \tan \alpha$ or $\dfrac{\lambda_{1}}{\lambda_{2}}=\cot ^{2} \alpha$
So, the correct answer is option A.
Note: We can say that the electric field lines flow from positive to negative charges. Such sources are well suited for surface applications such as wound healing, corneal repair or even brain and spinal stimulation with closely-separated, inserted electrodes. Electric field is not negative. It is a vector and thus has negative and positive directions. An electron being negatively charged experiences a force against the direction of the field. For a positive charge, the force is along the field. A measure of the strength of an electric field at a given point in space, equal to the force the field would induce on a unit electric charge at that point.
Complete step by step answer
We know that the electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field is radially outward from a positive charge and radially in toward a negative point charge.
The space around an electric charge in which its influence can be felt is known as the electric field. The electric field Intensity at a point is the force experienced by a unit positive charge placed at that point. Electric Field Intensity is a vector quantity.
Electric fields (e-fields) are an important tool in understanding how electricity begins and continues to flow. Electric fields describe the pulling or pushing force in a space between charges. The electric fields of single charges. A negative charge has an inward electric field because it attracts positive charges.
$E_{1}=\dfrac{\lambda_{1}}{2 \pi \varepsilon_{0} x}$ and ${{E}_{1}}=\dfrac{{{\lambda }_{q}}}{2\pi {{\varepsilon }_{0}}y}$
$\dfrac{E_{1}}{E_{2}}=\left(\dfrac{\lambda_{1}}{\lambda_{2}}\right)\left(\dfrac{y}{x}\right)$
$\dfrac{1}{\tan \alpha}=\left(\dfrac{\lambda_{1}}{\lambda_{2}}\right) \tan \alpha$ or $\dfrac{\lambda_{1}}{\lambda_{2}}=\cot ^{2} \alpha$
So, the correct answer is option A.
Note: We can say that the electric field lines flow from positive to negative charges. Such sources are well suited for surface applications such as wound healing, corneal repair or even brain and spinal stimulation with closely-separated, inserted electrodes. Electric field is not negative. It is a vector and thus has negative and positive directions. An electron being negatively charged experiences a force against the direction of the field. For a positive charge, the force is along the field. A measure of the strength of an electric field at a given point in space, equal to the force the field would induce on a unit electric charge at that point.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main