Answer
Verified
87.3k+ views
Hint: To solve this question we should know about the thermodynamic processes and the relation between them. There are a lot of equations and formulas regarding the thermodynamic processes revising those formulas before solving this sum helps in better understanding.
Complete step by step answer
There are different types of thermodynamic processes.
A process in which the temperature of the system is maintained throughout is called an isothermal process.
In isobaric processes the pressure is maintained constant while in isochoric processes the volume is maintained constant.
If the system is insulated from the surroundings then no heat flows between the system and the surroundings and this process is adiabatic process.
In the given problem the first process is an isochoric process because the volume is constant in the first process.
In isochoric process the heat change is given by
$\Delta {Q_v} = n{C_v}\Delta T$
Where,
$\Delta {Q_V}$ is the change in heat at constant volume
${C_v}$ is the specific heat capacity at constant volume.
$\Delta T$ is the change in temperature.
$n$ is the number of moles.
Given that,
The initial temperature ${T_A} = 300K$
The number of moles $n = 2$
The pressure is reduced to half $P = \dfrac{P}{2}$
In an isochoric process, volume remains constant, so pressure is directly proportional to temperature
The final temperature ${T_B} = \dfrac{{{T_A}}}{2}$
$ \Rightarrow {T_B} = \dfrac{{300}}{2}$
$ \Rightarrow {T_B} = 150K$
The change in temperature is ${T_B} - {T_A} = 300 - 150$
$ \Rightarrow \Delta T = 130K$
The second process is isobaric process because the pressure is constant
In isobaric process the heat change is given by
$\Delta {Q_P} = n{C_p}\Delta T$
Where,
$\Delta {Q_P}$ is the change in heat at constant pressure
${C_P}$ is the specific heat capacity at constant pressure.
$\Delta T$ is the change in temperature.
$n$ is the number of moles.
Net change in heat i.e. the heat absorbed by the gas is given by
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = }}n{C_p}\Delta T - n{C_v}\Delta T{\text{ = n}}\Delta {\text{T(}}{{\text{C}}_p} - {C_V})$
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = n}}\Delta {\text{T(}}{{\text{C}}_p} - {C_V})$
In a thermodynamic process, ${\text{(}}{{\text{C}}_p} - {C_V}) = R$, where R is gas constant
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = n}}\Delta {\text{TR}}$
Substitute the known values
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = 2}} \times {\text{150}} \times {\text{R}}$
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = 300R J}}$
The unit of heat is Joule
Hence the correct answer is option (B) $300R\,J$
Note: Most of the students do not know how to find the temperature change in this problem. In an isochoric process, volume remains constant, so pressure is directly proportional to temperature. Here the pressure is reduced to half so the temperature is also reduced to half.
Complete step by step answer
There are different types of thermodynamic processes.
A process in which the temperature of the system is maintained throughout is called an isothermal process.
In isobaric processes the pressure is maintained constant while in isochoric processes the volume is maintained constant.
If the system is insulated from the surroundings then no heat flows between the system and the surroundings and this process is adiabatic process.
In the given problem the first process is an isochoric process because the volume is constant in the first process.
In isochoric process the heat change is given by
$\Delta {Q_v} = n{C_v}\Delta T$
Where,
$\Delta {Q_V}$ is the change in heat at constant volume
${C_v}$ is the specific heat capacity at constant volume.
$\Delta T$ is the change in temperature.
$n$ is the number of moles.
Given that,
The initial temperature ${T_A} = 300K$
The number of moles $n = 2$
The pressure is reduced to half $P = \dfrac{P}{2}$
In an isochoric process, volume remains constant, so pressure is directly proportional to temperature
The final temperature ${T_B} = \dfrac{{{T_A}}}{2}$
$ \Rightarrow {T_B} = \dfrac{{300}}{2}$
$ \Rightarrow {T_B} = 150K$
The change in temperature is ${T_B} - {T_A} = 300 - 150$
$ \Rightarrow \Delta T = 130K$
The second process is isobaric process because the pressure is constant
In isobaric process the heat change is given by
$\Delta {Q_P} = n{C_p}\Delta T$
Where,
$\Delta {Q_P}$ is the change in heat at constant pressure
${C_P}$ is the specific heat capacity at constant pressure.
$\Delta T$ is the change in temperature.
$n$ is the number of moles.
Net change in heat i.e. the heat absorbed by the gas is given by
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = }}n{C_p}\Delta T - n{C_v}\Delta T{\text{ = n}}\Delta {\text{T(}}{{\text{C}}_p} - {C_V})$
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = n}}\Delta {\text{T(}}{{\text{C}}_p} - {C_V})$
In a thermodynamic process, ${\text{(}}{{\text{C}}_p} - {C_V}) = R$, where R is gas constant
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = n}}\Delta {\text{TR}}$
Substitute the known values
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = 2}} \times {\text{150}} \times {\text{R}}$
$ \Rightarrow \Delta {Q_p} - \Delta {Q_V}{\text{ = 300R J}}$
The unit of heat is Joule
Hence the correct answer is option (B) $300R\,J$
Note: Most of the students do not know how to find the temperature change in this problem. In an isochoric process, volume remains constant, so pressure is directly proportional to temperature. Here the pressure is reduced to half so the temperature is also reduced to half.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If the length of the pendulum is made 9 times and mass class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Which of the following facts regarding bond order is class 11 chemistry JEE_Main
If temperature of sun is decreased by 1 then the value class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A lens forms a sharp image on a screen On inserting class 12 physics JEE_MAIN