Answer

Verified

21k+ views

**Hint**When two conductors are connected in series then their resistance gets added and becomes effective resistance of arrangement i.e. if two resistors of resistance ${R_1}$and ${R_2}$are connected in series then the effective resistance of combination will become \[{R_1} + {R_2}\]. Using this relation for effective resistance, we can find the effective conductivity.

**Formula used**

1. $R = \dfrac{L}{{\sigma A}}$ (R is the resistance, L is the length of the conductor, A is the cross-sectional area of the conductor,$\sigma $ is the conductivity of the conductor)

2. \[{R_{eff}} = {R_1} + {R_2}\] (${R_1}$and ${R_2}$ are the resistance of the wire in series combination and ${R_{eff}}$ is the effective resistance of the system.)

**Complete Step-by-step solution**

As the two metal wires are of identical dimension hence their length and the cross-sectional area are the same let their length be L and cross-sectional area be A. They are connected in series hence the effective resistance is the sum of their resistance.

Let, their resistance be ${R_1}$of wire with conductivity ${\sigma _1}$and ${R_2}$ wire with conductivity${\sigma _2}$ , and the effective resistance be ${R_{eff}}$and it’s effective conductivity be${\sigma _{eff}}$.

\[ \Rightarrow {R_{eff}} = {R_1} + {R_2}\]

$ \Rightarrow \dfrac{{L + L}}{{{\sigma _{eff}}A}} = \dfrac{L}{{{\sigma _1}A}} + \dfrac{L}{{{\sigma _2}A}}$

Length is taken as $L+L$ or $2L$ because the two wires are now connected and the length of both the wires together will contribute to the effective resistance.

\[ \Rightarrow \dfrac{2}{{{\sigma _{eff}}}} = \dfrac{1}{{{\sigma _1}}} + \dfrac{1}{{{\sigma _2}}}\]

$ \Rightarrow {\sigma _{eff}} = \dfrac{{2{\sigma _1}{\sigma _2}}}{{{\sigma _1} + {\sigma _2}}}$

$\therefore $The answer is option(B) ${\sigma _{eff}} = \dfrac{{2{\sigma _1}{\sigma _2}}}{{{\sigma _1} + {\sigma _2}}}$

**Note**If in question it had been mentioned that the wires are connected in parallel then we had to proceed towards the answer differently in that case reciprocal of effective resistance will be equal to the sum of reciprocal of individual resistance of wires i.e. $\dfrac{1}{{{R_{eff}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$. So one must carefully read the question before answering it and take care of whether the wire is connected in series or parallel as such small mistakes could make the solution incorrect and students might end up losing marks.

Recently Updated Pages

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

The path difference between two waves for constructive class 11 physics JEE_MAIN

What is the difference between solvation and hydra class 11 chemistry JEE_Main

IfFxdfrac1x2intlimits4xleft 4t22Ft rightdt then F4-class-12-maths-JEE_Main

Three point particles of mass 1 kg 15 kg and 25 kg class 11 physics JEE_Main

Sodium chloride is purified by passing hydrogen chloride class 11 chemistry JEE_Main

Other Pages

When propyne is treated with aqueous H2SO4 in presence class 12 chemistry JEE_Main

If the magnetizing field on a ferromagnetic material class 12 physics JEE_Main

when an object Is placed at a distance of 60 cm from class 12 physics JEE_Main

Assertion Acidic character of group 16 hydrides increases class 11 chemistry JEE_Main

The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main

Which of the following brings about dry bleaching A class 11 chemistry JEE_Main