
Two identical particles, each having a charge of $2.0 \times {10^{ - 4}}C$ and mass of $10g$, are kept at a separation of $10cm$ and then released. What would be the speeds of the particles when the separation becomes large?
Answer
216.6k+ views
Hint: Remember the law of conservation of energy. When the two particles are released, as the separation increases, the potential energy will get decreased, but the kinetic energy will get increased. That is the potential energy is converted into the kinetic energy of the particles.
Complete step by step answer:
Let’s define the data given in the question.
Charge of the two identical particles, $q = 2.0 \times {10^{ - 4}}C$
Mass of the two identical particles, $m = 10g = 10 \times {10^{ - 3}}kg$
Separation between the two particles, $r = 10cm = 10 \times {10^{ - 2}}m$
Here, we are asked to find the value of the speeds of the particle when the separation becomes large.
It is given that the particles are identical and have the same mass and charge. When it is placed near to each other, there will be a repulsive force and thus a potential energy is generated.
When it is released the particles get apart with the same velocity and the separation will be increased. At this time the potential energy will get decreased, but the kinetic energy will get increased. That is the potential energy is converted into the kinetic energy of the particles.
The potential energy of the two particles is given by,
$U = \dfrac{{k{q_1}{q_2}}}{r} = \dfrac{{kqq}}{r} = \dfrac{{k{q^2}}}{r}$
Where $k$ is a constant with a value equal to $9 \times {10^9}N{m^2}{C^{ - 2}}$
The kinetic energy of these two particles is given by,
$K.E = 2 \times \dfrac{1}{2}m{v^2} = m{v^2}$
Where, $v$ is the velocity of the particles
We know gain kinetic energy = loss potential energy
That is, $m{v^2} = \dfrac{{k{q^2}}}{r}$
$ \Rightarrow v = \sqrt {\dfrac{{k{q^2}}}{{rm}}} $
$ \Rightarrow v = \sqrt {\dfrac{{9 \times {{10}^9} \times {{(2 \times {{10}^{ - 3}})}^2}}}{{10 \times {{10}^{ - 2}} \times 10 \times {{20}^{ - 3}}}}} $
$ \therefore v = 600m{s^{ - 1}}$
That is the speeds of the particle when the separation becomes large, $v = 600m{s^{ - 1}}$.
Note: We use the letter U to denote electric potential energy, which has units of joules. The electrical potential energy will be positive if the two charges are of the same type, that is, either positive or negative. It will be negative if the two charges are of opposite types.
Complete step by step answer:
Let’s define the data given in the question.
Charge of the two identical particles, $q = 2.0 \times {10^{ - 4}}C$
Mass of the two identical particles, $m = 10g = 10 \times {10^{ - 3}}kg$
Separation between the two particles, $r = 10cm = 10 \times {10^{ - 2}}m$
Here, we are asked to find the value of the speeds of the particle when the separation becomes large.
It is given that the particles are identical and have the same mass and charge. When it is placed near to each other, there will be a repulsive force and thus a potential energy is generated.
When it is released the particles get apart with the same velocity and the separation will be increased. At this time the potential energy will get decreased, but the kinetic energy will get increased. That is the potential energy is converted into the kinetic energy of the particles.
The potential energy of the two particles is given by,
$U = \dfrac{{k{q_1}{q_2}}}{r} = \dfrac{{kqq}}{r} = \dfrac{{k{q^2}}}{r}$
Where $k$ is a constant with a value equal to $9 \times {10^9}N{m^2}{C^{ - 2}}$
The kinetic energy of these two particles is given by,
$K.E = 2 \times \dfrac{1}{2}m{v^2} = m{v^2}$
Where, $v$ is the velocity of the particles
We know gain kinetic energy = loss potential energy
That is, $m{v^2} = \dfrac{{k{q^2}}}{r}$
$ \Rightarrow v = \sqrt {\dfrac{{k{q^2}}}{{rm}}} $
$ \Rightarrow v = \sqrt {\dfrac{{9 \times {{10}^9} \times {{(2 \times {{10}^{ - 3}})}^2}}}{{10 \times {{10}^{ - 2}} \times 10 \times {{20}^{ - 3}}}}} $
$ \therefore v = 600m{s^{ - 1}}$
That is the speeds of the particle when the separation becomes large, $v = 600m{s^{ - 1}}$.
Note: We use the letter U to denote electric potential energy, which has units of joules. The electrical potential energy will be positive if the two charges are of the same type, that is, either positive or negative. It will be negative if the two charges are of opposite types.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

