
Two identical cells send the same current in \[3\Omega \] resistance, whether connected in series or parallel. The resistance of the cell should be:
$\left( a \right)$ \[1\Omega \]
$\left( b \right)$ \[3\Omega \]
$\left( c \right)$ \[\dfrac{1}{2}\Omega \]
$\left( d \right)$ \[3.5\Omega \]
Answer
126k+ views
Hint So for solving this question, we will first calculate the effective voltages and effective resistance in both the series and parallel cells connection. And then we will find the current separately for both. After that equating both the current we will get the resistance.
Formula used:
Current,
$I = \dfrac{E}{r}$,
$I$, will be the current
$E$, will be the effective voltage
$r$, will be the effective resistance
Complete Step By Step Solution
Let the voltage of each cell is equal to $E$, the internal resistance of each cell is equal to $r$
When cells are in series-
The effective voltage of the circuit will be$ = E + E = 2E$
And effective resistance of the circuit will be$ = r + r + 3 = 2r + 3$
Therefore the current will be
${I_1} = \dfrac{{2E}}{{2r + 3}}$
When cells are in parallel, then
The effective voltage of the circuit will be $ = E$
And effective resistance of the circuit will be $ = \dfrac{r}{3} + r$
Therefore the current will be
${I_2} = \dfrac{{2E}}{{r + 6}}$
Since the current for both of them is the same that is we can write it as
$ \Rightarrow {I_1} = {I_2}$
Now equating both of the equations, we get
$ \Rightarrow \dfrac{{2E}}{{2r + 3}} = \dfrac{{2E}}{{r + 6}}$
Since the numerator is the same so both of them will cancel each other.
Now,
$ \Rightarrow 2r + 3 = r + 6$
Now on solving the above equation, we will get
$ \Rightarrow r = 3\Omega $
Hence, $3\Omega $ will be the resistance of the cell.
Therefore, the option $B$ will be the correct answer.
Note So if the resistors are in parallel then we can find it by using the formula ${R_{eq}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$and so on. And if it is in series then we will use the formula ${R_{eq}} = {R_1} + {R_2}$and so on. Now if there is the case of the capacitor then it will become reverse of the above. That is parallel we will simply add the capacitor but if it is in series then we will add like this ${C_{eq}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}}$.
Formula used:
Current,
$I = \dfrac{E}{r}$,
$I$, will be the current
$E$, will be the effective voltage
$r$, will be the effective resistance
Complete Step By Step Solution
Let the voltage of each cell is equal to $E$, the internal resistance of each cell is equal to $r$
When cells are in series-
The effective voltage of the circuit will be$ = E + E = 2E$
And effective resistance of the circuit will be$ = r + r + 3 = 2r + 3$
Therefore the current will be
${I_1} = \dfrac{{2E}}{{2r + 3}}$
When cells are in parallel, then
The effective voltage of the circuit will be $ = E$
And effective resistance of the circuit will be $ = \dfrac{r}{3} + r$
Therefore the current will be
${I_2} = \dfrac{{2E}}{{r + 6}}$
Since the current for both of them is the same that is we can write it as
$ \Rightarrow {I_1} = {I_2}$
Now equating both of the equations, we get
$ \Rightarrow \dfrac{{2E}}{{2r + 3}} = \dfrac{{2E}}{{r + 6}}$
Since the numerator is the same so both of them will cancel each other.
Now,
$ \Rightarrow 2r + 3 = r + 6$
Now on solving the above equation, we will get
$ \Rightarrow r = 3\Omega $
Hence, $3\Omega $ will be the resistance of the cell.
Therefore, the option $B$ will be the correct answer.
Note So if the resistors are in parallel then we can find it by using the formula ${R_{eq}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$and so on. And if it is in series then we will use the formula ${R_{eq}} = {R_1} + {R_2}$and so on. Now if there is the case of the capacitor then it will become reverse of the above. That is parallel we will simply add the capacitor but if it is in series then we will add like this ${C_{eq}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}}$.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main Login 2045: Step-by-Step Instructions and Details

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main 2025: Derivation of Equation of Trajectory in Physics
