
Two identical balls 'A' and 'B' are moving with the same velocity. If the velocity of 'A' is reduced to half and of 'B' to zero, then the rise in temperature of 'A' to that is reduced to half and of 'B' to zero, then the rise in temperature of 'A' to that of 'B' is
A) $3:4$
B) $4:1$
C) $2:1$
D) $1:1$
Answer
123.6k+ views
Hint: When the balls slow down, the loss in kinetic energy will be converted to heat energy. This heat energy will increase the temperature of the balls and the balls being identical will have the same specific heat capacity.
Formula used:
In this question, we will use the following formula
-$Q = mc\Delta T$ where $Q$ is the energy needed to increase the temperature of an object by $\Delta T$ temperature difference and $C$ is the specific heat capacity
- Kinetic energy of a ball: $K = \dfrac{1}{2}m{v^2}$ where \[m\] is the mass of the ball and $v$ is its velocity.
Complete step by step answer:
We’ve been told that two balls that are moving with the same velocity slow down and consequently both their temperature rises and we want to find the ratio of their temperature rise.
We will assume that the difference in kinetic energy will directly increase the temperature for both the balls, so we can write
$\Delta K = Q$
Since $\Delta K = \dfrac{1}{2}m{v_{final}}^2 - \dfrac{1}{2}m{v_{initial}}^2 = \dfrac{1}{2}m({v_{final}}^2 - {v_{initial}}^2)$, we can write
$\dfrac{1}{2}m({v_{final}}^2 - {v_{initial}}^2) = mc\Delta T$
Taking the ratio of kinetic energies for both the balls, we can write
$\dfrac{{\dfrac{1}{2}m({v_{1,final}}^2 - {v_{1,initial}}^2)}}{{\dfrac{1}{2}m({v_{2,final}}^2 - {v_{2,initial}}^2)}} = \dfrac{{mc\Delta {T_1}}}{{mc\Delta {T_2}}}$
Now, the velocity of 'A' is reduced to half and of 'B' to zero and the initial velocities of both the balls are the same which is denoted by $v$, so we can write
$\dfrac{{\dfrac{1}{2}m({v_{1,final}}^2 - {v_{1,initial}}^2)}}{{\dfrac{1}{2}m({v_{2,final}}^2 - {v_{2,initial}}^2)}} = \dfrac{{mc\Delta {T_1}}}{{mc\Delta {T_2}}}$
$\dfrac{{\dfrac{1}{2}\left[ {m\left\{ {{{\left( {\dfrac{v}{2}} \right)}^2} - {v^2}} \right\}} \right]}}{{\dfrac{1}{2}m(0 - {v^2})}} = \dfrac{{mc\Delta {T_1}}}{{mc\Delta {T_2}}}$
Which gives us
$\dfrac{3}{4} = \dfrac{{\Delta {T_1}}}{{\Delta {T_2}}}$
Hence the correct choice is option (A).
Note: Here we have assumed that the loss in kinetic energy will all be converted into changing the temperature of the balls however in reality there are energy losses associated with air drag resistance and other friction forces. As a result, balls with different velocities will experience different energy losses, and different energy rises than in the ideal case.
Formula used:
In this question, we will use the following formula
-$Q = mc\Delta T$ where $Q$ is the energy needed to increase the temperature of an object by $\Delta T$ temperature difference and $C$ is the specific heat capacity
- Kinetic energy of a ball: $K = \dfrac{1}{2}m{v^2}$ where \[m\] is the mass of the ball and $v$ is its velocity.
Complete step by step answer:
We’ve been told that two balls that are moving with the same velocity slow down and consequently both their temperature rises and we want to find the ratio of their temperature rise.
We will assume that the difference in kinetic energy will directly increase the temperature for both the balls, so we can write
$\Delta K = Q$
Since $\Delta K = \dfrac{1}{2}m{v_{final}}^2 - \dfrac{1}{2}m{v_{initial}}^2 = \dfrac{1}{2}m({v_{final}}^2 - {v_{initial}}^2)$, we can write
$\dfrac{1}{2}m({v_{final}}^2 - {v_{initial}}^2) = mc\Delta T$
Taking the ratio of kinetic energies for both the balls, we can write
$\dfrac{{\dfrac{1}{2}m({v_{1,final}}^2 - {v_{1,initial}}^2)}}{{\dfrac{1}{2}m({v_{2,final}}^2 - {v_{2,initial}}^2)}} = \dfrac{{mc\Delta {T_1}}}{{mc\Delta {T_2}}}$
Now, the velocity of 'A' is reduced to half and of 'B' to zero and the initial velocities of both the balls are the same which is denoted by $v$, so we can write
$\dfrac{{\dfrac{1}{2}m({v_{1,final}}^2 - {v_{1,initial}}^2)}}{{\dfrac{1}{2}m({v_{2,final}}^2 - {v_{2,initial}}^2)}} = \dfrac{{mc\Delta {T_1}}}{{mc\Delta {T_2}}}$
$\dfrac{{\dfrac{1}{2}\left[ {m\left\{ {{{\left( {\dfrac{v}{2}} \right)}^2} - {v^2}} \right\}} \right]}}{{\dfrac{1}{2}m(0 - {v^2})}} = \dfrac{{mc\Delta {T_1}}}{{mc\Delta {T_2}}}$
Which gives us
$\dfrac{3}{4} = \dfrac{{\Delta {T_1}}}{{\Delta {T_2}}}$
Hence the correct choice is option (A).
Note: Here we have assumed that the loss in kinetic energy will all be converted into changing the temperature of the balls however in reality there are energy losses associated with air drag resistance and other friction forces. As a result, balls with different velocities will experience different energy losses, and different energy rises than in the ideal case.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
