Answer
Verified
81.3k+ views
Hint: Note the direction of current for each of the loops and then find the highest and lowest potential points for each of the rings. Find the potential difference between the highest and lowest points for each of the rings from the given magnetic field and radius. The potential of the point on the surface is equal for both of the rings since they are in the same plane.
Find the potential difference between the highest points of the rings from each potential difference of these two rings.
Formula used:
If $A$ is the highest potential point and \[E\] is the lowest potential point of the ring of radius \[r\] moving with a speed $2v$,
The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
and, if $C$ is the highest potential point and $D$ is the lowest potential point, of the ring of radius $3r$ moving with a speed $v$,
The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
Where, $B$ is the magnetic field acting perpendicular to the plane of the rings.
The potential difference, $V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
Complete step by step solution:
For the first ring, the direction of velocity is towards the left side. So if we apply Fleming’s right hand rule, the current is flowing from point $A$ to \[E\]. Hence, $A$ is the highest potential point and \[E\] is the lowest potential point of the ring.
Given, \[r\]is the radius of the ring and it is moving with a speed $2v$
$B$ is the magnetic field acting perpendicular to the plane of the rings.
$\therefore $ The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
$ \Rightarrow {V_{AE}} = 4Brv$
For the second ring, the direction of velocity is towards the right side. So if we apply Fleming’s right-hand rule, the current is flowing from point $C$ to \[D\]. Hence, $C$ is the highest potential point and $D$ is the lowest potential point Given, \[3r\] is the radius of the ring and it is moving with a speed $v$
$\therefore $ The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
$ \Rightarrow {V_{CD}} = 6Brv$
The potential difference ,$V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
$\therefore V = 6Brv + 4Brv = 10Brv$ .
Hence, the right answer is in option \[{\text{D}}{\text{. }}10{\text{ Brv}}\].
Note: The formula used for calculating the potential difference is coming from the equation of induced current in a straight conductor in motion, where the induced current $I = \dfrac{{Blv}}{R}$, $B$ is the magnetic field, $v$ is the motion, $l$ is the length of the straight conductor and $R$ is the resistance.
$ \Rightarrow IR = Blv$
$ \Rightarrow e = Blv$
$e$ is the electromotive force of the circuit, $e = IR$ [Ohm’s law]
In the above problem, the length of the straight conductor $l = 2r$ i.e the length is equal to the diameter of the ring.
Find the potential difference between the highest points of the rings from each potential difference of these two rings.
Formula used:
If $A$ is the highest potential point and \[E\] is the lowest potential point of the ring of radius \[r\] moving with a speed $2v$,
The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
and, if $C$ is the highest potential point and $D$ is the lowest potential point, of the ring of radius $3r$ moving with a speed $v$,
The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
Where, $B$ is the magnetic field acting perpendicular to the plane of the rings.
The potential difference, $V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
Complete step by step solution:
For the first ring, the direction of velocity is towards the left side. So if we apply Fleming’s right hand rule, the current is flowing from point $A$ to \[E\]. Hence, $A$ is the highest potential point and \[E\] is the lowest potential point of the ring.
Given, \[r\]is the radius of the ring and it is moving with a speed $2v$
$B$ is the magnetic field acting perpendicular to the plane of the rings.
$\therefore $ The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
$ \Rightarrow {V_{AE}} = 4Brv$
For the second ring, the direction of velocity is towards the right side. So if we apply Fleming’s right-hand rule, the current is flowing from point $C$ to \[D\]. Hence, $C$ is the highest potential point and $D$ is the lowest potential point Given, \[3r\] is the radius of the ring and it is moving with a speed $v$
$\therefore $ The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
$ \Rightarrow {V_{CD}} = 6Brv$
The potential difference ,$V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
$\therefore V = 6Brv + 4Brv = 10Brv$ .
Hence, the right answer is in option \[{\text{D}}{\text{. }}10{\text{ Brv}}\].
Note: The formula used for calculating the potential difference is coming from the equation of induced current in a straight conductor in motion, where the induced current $I = \dfrac{{Blv}}{R}$, $B$ is the magnetic field, $v$ is the motion, $l$ is the length of the straight conductor and $R$ is the resistance.
$ \Rightarrow IR = Blv$
$ \Rightarrow e = Blv$
$e$ is the electromotive force of the circuit, $e = IR$ [Ohm’s law]
In the above problem, the length of the straight conductor $l = 2r$ i.e the length is equal to the diameter of the ring.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main