
Two closed organ pipes of length 100 cm and 101 cm produce 16 beats in 20 seconds fundamental frequency formula in open when each pipe is sounded in its fundamental frequency mode to calculate the velocity of sound.
A) 303 m/s
B) 332 m/s
C) 323.2 m/s
D) 300 m/s
Answer
233.1k+ views
Hint: In the given question both pipes are open ended and producing sound at their fundamental frequency. Relate it with the formula of an open ended pipe when length and velocity are given and which is resonating in \[{N^{th}}\] harmonic . And we know that the number of beats produced is different between two frequencies.
Complete step by step solution:
Given an open ended pipe and formula for frequency \[f\] when pipe is resonating over \[{N^{th}}\] harmonic is:
\[f = \frac{{nv}}{{4l}}\]
Where:
\[f\] = frequency
\[n\] = \[{N^{th}}\] harmonic
\[v\] = velocity of sound
\[l\] = length of the pipe
Formula for number of beats is :
Number of beats = \[|{f_{}} - {f_2}|\]
Now according to question:
As 16 bests are produced in 20 seconds then
Number of beats per second is = \[\frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{v}{{4{l_{}}}} - \frac{v}{{4{l_2}}}\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{{{l_1}}} - \frac{1}{{{l_2}}})\]
\[{l_1} = 100cm = 1m\]
\[{l_2} = 101cm = 1.01m\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}})\]
\[\frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}}) = \frac{4}{5}\]
\[v = \frac{{1.01 \times 16}}{{5 \times 0.01}}\]
\[v = 323.2m/s\]
Hence, option C is correct.
Note: In open end pipes The longest standing wave in a tube of length L with two open ends has displacement antinodes (pressure nodes) at both ends. It is called the fundamental or first harmonic. The next longest standing wave in a tube of length L with two open ends is the second harmonic. It also has displacement antinodes at each end.
Complete step by step solution:
Given an open ended pipe and formula for frequency \[f\] when pipe is resonating over \[{N^{th}}\] harmonic is:
\[f = \frac{{nv}}{{4l}}\]
Where:
\[f\] = frequency
\[n\] = \[{N^{th}}\] harmonic
\[v\] = velocity of sound
\[l\] = length of the pipe
Formula for number of beats is :
Number of beats = \[|{f_{}} - {f_2}|\]
Now according to question:
As 16 bests are produced in 20 seconds then
Number of beats per second is = \[\frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{v}{{4{l_{}}}} - \frac{v}{{4{l_2}}}\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{{{l_1}}} - \frac{1}{{{l_2}}})\]
\[{l_1} = 100cm = 1m\]
\[{l_2} = 101cm = 1.01m\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}})\]
\[\frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}}) = \frac{4}{5}\]
\[v = \frac{{1.01 \times 16}}{{5 \times 0.01}}\]
\[v = 323.2m/s\]
Hence, option C is correct.
Note: In open end pipes The longest standing wave in a tube of length L with two open ends has displacement antinodes (pressure nodes) at both ends. It is called the fundamental or first harmonic. The next longest standing wave in a tube of length L with two open ends is the second harmonic. It also has displacement antinodes at each end.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Uniform Acceleration in Physics

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

