Answer
Verified
85.5k+ views
Hint: In the given question both pipes are open ended and producing sound at their fundamental frequency. Relate it with the formula of an open ended pipe when length and velocity are given and which is resonating in \[{N^{th}}\] harmonic . And we know that the number of beats produced is different between two frequencies.
Complete step by step solution:
Given an open ended pipe and formula for frequency \[f\] when pipe is resonating over \[{N^{th}}\] harmonic is:
\[f = \frac{{nv}}{{4l}}\]
Where:
\[f\] = frequency
\[n\] = \[{N^{th}}\] harmonic
\[v\] = velocity of sound
\[l\] = length of the pipe
Formula for number of beats is :
Number of beats = \[|{f_{}} - {f_2}|\]
Now according to question:
As 16 bests are produced in 20 seconds then
Number of beats per second is = \[\frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{v}{{4{l_{}}}} - \frac{v}{{4{l_2}}}\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{{{l_1}}} - \frac{1}{{{l_2}}})\]
\[{l_1} = 100cm = 1m\]
\[{l_2} = 101cm = 1.01m\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}})\]
\[\frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}}) = \frac{4}{5}\]
\[v = \frac{{1.01 \times 16}}{{5 \times 0.01}}\]
\[v = 323.2m/s\]
Hence, option C is correct.
Note: In open end pipes The longest standing wave in a tube of length L with two open ends has displacement antinodes (pressure nodes) at both ends. It is called the fundamental or first harmonic. The next longest standing wave in a tube of length L with two open ends is the second harmonic. It also has displacement antinodes at each end.
Complete step by step solution:
Given an open ended pipe and formula for frequency \[f\] when pipe is resonating over \[{N^{th}}\] harmonic is:
\[f = \frac{{nv}}{{4l}}\]
Where:
\[f\] = frequency
\[n\] = \[{N^{th}}\] harmonic
\[v\] = velocity of sound
\[l\] = length of the pipe
Formula for number of beats is :
Number of beats = \[|{f_{}} - {f_2}|\]
Now according to question:
As 16 bests are produced in 20 seconds then
Number of beats per second is = \[\frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{{16}}{{20}} = \frac{4}{5}\]
\[|{f_{}} - {f_2}| = \frac{v}{{4{l_{}}}} - \frac{v}{{4{l_2}}}\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{{{l_1}}} - \frac{1}{{{l_2}}})\]
\[{l_1} = 100cm = 1m\]
\[{l_2} = 101cm = 1.01m\]
\[|{f_{}} - {f_2}| = \frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}})\]
\[\frac{v}{4}(\frac{1}{1} - \frac{1}{{1.01}}) = \frac{4}{5}\]
\[v = \frac{{1.01 \times 16}}{{5 \times 0.01}}\]
\[v = 323.2m/s\]
Hence, option C is correct.
Note: In open end pipes The longest standing wave in a tube of length L with two open ends has displacement antinodes (pressure nodes) at both ends. It is called the fundamental or first harmonic. The next longest standing wave in a tube of length L with two open ends is the second harmonic. It also has displacement antinodes at each end.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
The process requiring the absorption of energy is A class 11 chemistry JEE_Main