Answer
Verified
81k+ views
Hint: When a capacitor is charged, it not only stores charge but also energy. The type of energy stored in the capacitors is the electrical potential energy. When the battery is removed, the capacitor dissipates the electrical energy stored in it (until it gets completely discharged) to the electrical device it is connected to and so it can be used like a temporary battery.
Complete step by step solution:
When it is connected to a battery, the charge stored in the capacitor is its capacitance times the voltage of the battery. The charge is stored until the potential of the capacitor is equal to the voltage of the battery.
$Q = CV$
Where,
$Q =$ charge stored
$C =$ capacitance of the capacitor
$V =$ voltage of the battery
The capacitors are connected in parallel, therefore their total capacitance is calculated as ${C_{total}} = {C_1} + {C_2}$. Here, ${C_1} = 3\mu F$ and ${C_2} = 4\mu F$.
Calculating the charge on the first capacitor:
$\Rightarrow {Q_1} = {C_1}{V_1}$
$\Rightarrow {Q_1} = \left( {3\mu F} \right)\left( {6V} \right)$
$\Rightarrow {Q_1} = 18\mu C$
Calculating the charge on the second capacitor:
$\Rightarrow {Q_2} = {C_2}{V_2}$
$\Rightarrow {Q_2} = \left( {4\mu F} \right)\left( {6V} \right)$
$\Rightarrow {Q_2} = 24\mu C$
Common potential difference, ${V_{common}}$is equal to the total charge of the capacitors$({Q_{total}})$ divided by their total capacitance $\left( {{C_{total}}} \right)$
i.e., ${V_{common}} = \dfrac{{{Q_{total}}}}{{{C_{total}}}}$
$\Rightarrow {V_{common}} = \dfrac{{24\mu C - 18\mu C}}{{3\mu F + 4\mu F}}$
$\Rightarrow {V_{common}} = \dfrac{6}{7}V$
Energy of a capacitor, ${E_{capacitor}} = \dfrac{1}{2}QV$
Substituting the value of $Q = CV$ in the above equation, we get
$\Rightarrow {E_{capacitor}} = \dfrac{1}{2}C{V^2}$
Hence, the final energy stored $\left( {{U_{final}}} \right)$ is given as:
$\Rightarrow {U_{final}} = \dfrac{1}{2}\left( {{C_1} + {C_2}} \right)V_{common}^2$
$\Rightarrow {U_{final}} = \dfrac{1}{2}\left( {3 \times {{10}^{ - 6}} + 4 \times {{10}^{ - 6}}} \right){\left( {\dfrac{6}{7}} \right)^2}$
$\Rightarrow {U_{final}} = \dfrac{{{{10}^{ - 6}}}}{2}(7)\left( {\dfrac{6}{7}} \right)\left( {\dfrac{6}{7}} \right)$
$\Rightarrow {U_{final}} = \dfrac{{18}}{7} \times {10^{ - 6}}J$
$\therefore {U_{final}} = 2.57 \times {10^{ - 6}}J$
Therefore, the correct answer [D], $2.57 \times {10^{ - 6}}J$.
Note: The change in electrical potential energy $\Delta P.E{._{electric}}$ is given as: $\Delta P.E{._{electric}} = QV$. But Energy of a capacitor, ${E_{capacitor}} = \dfrac{1}{2}QV$. This is because as the charge stored on the capacitor decreases during discharge of charge, so does the voltage across the capacitor decrease. the sum of the different values of energy at each instant as the voltage across the capacitor drops is equal to ${E_{capacitor}}.$
Complete step by step solution:
When it is connected to a battery, the charge stored in the capacitor is its capacitance times the voltage of the battery. The charge is stored until the potential of the capacitor is equal to the voltage of the battery.
$Q = CV$
Where,
$Q =$ charge stored
$C =$ capacitance of the capacitor
$V =$ voltage of the battery
The capacitors are connected in parallel, therefore their total capacitance is calculated as ${C_{total}} = {C_1} + {C_2}$. Here, ${C_1} = 3\mu F$ and ${C_2} = 4\mu F$.
Calculating the charge on the first capacitor:
$\Rightarrow {Q_1} = {C_1}{V_1}$
$\Rightarrow {Q_1} = \left( {3\mu F} \right)\left( {6V} \right)$
$\Rightarrow {Q_1} = 18\mu C$
Calculating the charge on the second capacitor:
$\Rightarrow {Q_2} = {C_2}{V_2}$
$\Rightarrow {Q_2} = \left( {4\mu F} \right)\left( {6V} \right)$
$\Rightarrow {Q_2} = 24\mu C$
Common potential difference, ${V_{common}}$is equal to the total charge of the capacitors$({Q_{total}})$ divided by their total capacitance $\left( {{C_{total}}} \right)$
i.e., ${V_{common}} = \dfrac{{{Q_{total}}}}{{{C_{total}}}}$
$\Rightarrow {V_{common}} = \dfrac{{24\mu C - 18\mu C}}{{3\mu F + 4\mu F}}$
$\Rightarrow {V_{common}} = \dfrac{6}{7}V$
Energy of a capacitor, ${E_{capacitor}} = \dfrac{1}{2}QV$
Substituting the value of $Q = CV$ in the above equation, we get
$\Rightarrow {E_{capacitor}} = \dfrac{1}{2}C{V^2}$
Hence, the final energy stored $\left( {{U_{final}}} \right)$ is given as:
$\Rightarrow {U_{final}} = \dfrac{1}{2}\left( {{C_1} + {C_2}} \right)V_{common}^2$
$\Rightarrow {U_{final}} = \dfrac{1}{2}\left( {3 \times {{10}^{ - 6}} + 4 \times {{10}^{ - 6}}} \right){\left( {\dfrac{6}{7}} \right)^2}$
$\Rightarrow {U_{final}} = \dfrac{{{{10}^{ - 6}}}}{2}(7)\left( {\dfrac{6}{7}} \right)\left( {\dfrac{6}{7}} \right)$
$\Rightarrow {U_{final}} = \dfrac{{18}}{7} \times {10^{ - 6}}J$
$\therefore {U_{final}} = 2.57 \times {10^{ - 6}}J$
Therefore, the correct answer [D], $2.57 \times {10^{ - 6}}J$.
Note: The change in electrical potential energy $\Delta P.E{._{electric}}$ is given as: $\Delta P.E{._{electric}} = QV$. But Energy of a capacitor, ${E_{capacitor}} = \dfrac{1}{2}QV$. This is because as the charge stored on the capacitor decreases during discharge of charge, so does the voltage across the capacitor decrease. the sum of the different values of energy at each instant as the voltage across the capacitor drops is equal to ${E_{capacitor}}.$
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main