
Two blocks of masses \[10\,kg\] and $4\,kg$ are connected by a spring of negligible mass and are placed on a frictionless horizontal surface. An impulse gives a speed of $14m/s$ to the heavier block in the direction of the lighter block. then, the velocity of the Centre of mass is:
A) $30\,m{s^{ - 1}}$
B) $20\,m{s^{ - 1}}$
C) $10\,m{s^{ - 1}}$
D) $5\,m{s^{ - 1}}$
Answer
168.3k+ views
Hint: The mass velocity equation center is the sum of the momentum of each particle mass times velocity divided by the total mass of the system, and we can also calculate the missing quantity in any numerical if any of these two quantities are given by using this formula.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Formula used:
Velocity of center of mass
${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
${v_1}$ is the velocity of the first particle,
\[\;{v_2}\;\] is the velocity of the second particle,
$m$ is the total mass of the system.
Complete step by step solution:
Given by,
Mass of the block ${m_1} = 10\,kg$
Mass of the block ${m_2} = 4\,kg$
Velocity of mass ${m_1}$, ${v_1} = 14\,m/s$
Velocity of mass \[{m_2}\] ,${v_2} = 0$
If we assume that all of the system's mass is located in the mass center of the system.
According to the velocity of center of mass,
$\Rightarrow$ ${V_{CM}} = \dfrac{{{m_1}{v_1} + {m_1}{v_1}}}{{{m_1} + {m_2}}}$
Substituting the given value in above equation,
$\Rightarrow$ ${V_{CM}} = \dfrac{{10 \times 14 + 0}}{{10 + 4}}$
On simplifying,
$\Rightarrow$ ${V_{CM}} = \dfrac{{140}}{{14}}$
We get, ${V_{CM}} = 10\,m/s$
Hence, The option C is the correct answer.
Note: When Velocity is an indicator of how much time an object takes to reach a directional destination. If a rigid body is considered, the center of mass may or may not be identical to the geometric center. It is regarded as a reference point for many other mechanical calculations.
Recently Updated Pages
Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
