Answer
Verified
86.1k+ views
Hint: We will use Kirchhoff's rule to find a relation of the resistances and the $emf$ of the two batteries. Then, we will equate them with each other.
Step By Step Solution
Here,
\[{V_1}\] is the $emf$ of the first battery and \[{V_2}\] is that of the second one. \[{r_1}\] is the internal resistance of the first battery and \[{r_2}\] is that of the second. \[R\] in the load resistance.
Now,
For the first situation when current is $3A$ .
By Kirchhoff’s Law,
\[\frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{{\mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 }} = \mathop 3\nolimits_{} \]
Thus, we can say
$\mathop {(R + r}\nolimits_1 \mathop { + r}\nolimits_2 ) = \frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{3} \cdot \cdot \cdot \cdot (1)$
Similarly for the second case when current is $1A$ ,
$\mathop V\nolimits_1 \mathop { - V}\nolimits_2 = \mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 $
Now,
Putting in equation $(1)$, we get
$\mathop {3V}\nolimits_1 \mathop { - 3V}\nolimits_2 = \mathop V\nolimits_1 \mathop { + V}\nolimits_2 $
After further evaluation, we get
$\mathop {2V}\nolimits_1 = \mathop {4V}\nolimits_2 $
In the question, it is asked for $\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }}$
Thus, we get
\[\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }} = \frac{2}{1}\]
Hence, the answer is (B).
Additional Information: The Kirchhoff’s rules are handy to use in the cases for internal resistance, multiple $emf$ and in the cases indulging potentiometer. These rules are simple and very intuitive. Just that they were placed in a standardized manner by Kirchhoff.
The internal resistance we are talking about is referring to the resistance offered by the battery itself at initiation. This internal resistance value decides about the behavior of the circuit. Though minimal, but still of concern.
Note: We directly evaluated the result due to the application of the Kirchhoff’s law. One should not be confused about the direct relation. It is trivially coming from Kirchhoff's law.
Step By Step Solution
Here,
\[{V_1}\] is the $emf$ of the first battery and \[{V_2}\] is that of the second one. \[{r_1}\] is the internal resistance of the first battery and \[{r_2}\] is that of the second. \[R\] in the load resistance.
Now,
For the first situation when current is $3A$ .
By Kirchhoff’s Law,
\[\frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{{\mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 }} = \mathop 3\nolimits_{} \]
Thus, we can say
$\mathop {(R + r}\nolimits_1 \mathop { + r}\nolimits_2 ) = \frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{3} \cdot \cdot \cdot \cdot (1)$
Similarly for the second case when current is $1A$ ,
$\mathop V\nolimits_1 \mathop { - V}\nolimits_2 = \mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 $
Now,
Putting in equation $(1)$, we get
$\mathop {3V}\nolimits_1 \mathop { - 3V}\nolimits_2 = \mathop V\nolimits_1 \mathop { + V}\nolimits_2 $
After further evaluation, we get
$\mathop {2V}\nolimits_1 = \mathop {4V}\nolimits_2 $
In the question, it is asked for $\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }}$
Thus, we get
\[\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }} = \frac{2}{1}\]
Hence, the answer is (B).
Additional Information: The Kirchhoff’s rules are handy to use in the cases for internal resistance, multiple $emf$ and in the cases indulging potentiometer. These rules are simple and very intuitive. Just that they were placed in a standardized manner by Kirchhoff.
The internal resistance we are talking about is referring to the resistance offered by the battery itself at initiation. This internal resistance value decides about the behavior of the circuit. Though minimal, but still of concern.
Note: We directly evaluated the result due to the application of the Kirchhoff’s law. One should not be confused about the direct relation. It is trivially coming from Kirchhoff's law.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
The thickness of the depletion layer is approximately class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main