
Two batteries of different $emf$ and internal resistances connected in series with each other and with an external load resistor. The current is $3A$ . When the polarity of one battery is reversed, the current becomes $1A$ . The ratio of the $emf$ of the two batteries is:
(A) $2.5:1$
(B) \[2:1\]
(C) $3:2$
(D) $1:1$
Answer
206.4k+ views
Hint: We will use Kirchhoff's rule to find a relation of the resistances and the $emf$ of the two batteries. Then, we will equate them with each other.
Step By Step Solution

Here,
\[{V_1}\] is the $emf$ of the first battery and \[{V_2}\] is that of the second one. \[{r_1}\] is the internal resistance of the first battery and \[{r_2}\] is that of the second. \[R\] in the load resistance.
Now,
For the first situation when current is $3A$ .
By Kirchhoff’s Law,
\[\frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{{\mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 }} = \mathop 3\nolimits_{} \]
Thus, we can say
$\mathop {(R + r}\nolimits_1 \mathop { + r}\nolimits_2 ) = \frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{3} \cdot \cdot \cdot \cdot (1)$
Similarly for the second case when current is $1A$ ,
$\mathop V\nolimits_1 \mathop { - V}\nolimits_2 = \mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 $
Now,
Putting in equation $(1)$, we get
$\mathop {3V}\nolimits_1 \mathop { - 3V}\nolimits_2 = \mathop V\nolimits_1 \mathop { + V}\nolimits_2 $
After further evaluation, we get
$\mathop {2V}\nolimits_1 = \mathop {4V}\nolimits_2 $
In the question, it is asked for $\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }}$
Thus, we get
\[\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }} = \frac{2}{1}\]
Hence, the answer is (B).
Additional Information: The Kirchhoff’s rules are handy to use in the cases for internal resistance, multiple $emf$ and in the cases indulging potentiometer. These rules are simple and very intuitive. Just that they were placed in a standardized manner by Kirchhoff.
The internal resistance we are talking about is referring to the resistance offered by the battery itself at initiation. This internal resistance value decides about the behavior of the circuit. Though minimal, but still of concern.
Note: We directly evaluated the result due to the application of the Kirchhoff’s law. One should not be confused about the direct relation. It is trivially coming from Kirchhoff's law.
Step By Step Solution

Here,
\[{V_1}\] is the $emf$ of the first battery and \[{V_2}\] is that of the second one. \[{r_1}\] is the internal resistance of the first battery and \[{r_2}\] is that of the second. \[R\] in the load resistance.
Now,
For the first situation when current is $3A$ .
By Kirchhoff’s Law,
\[\frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{{\mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 }} = \mathop 3\nolimits_{} \]
Thus, we can say
$\mathop {(R + r}\nolimits_1 \mathop { + r}\nolimits_2 ) = \frac{{\mathop V\nolimits_1 \mathop { + V}\nolimits_2 }}{3} \cdot \cdot \cdot \cdot (1)$
Similarly for the second case when current is $1A$ ,
$\mathop V\nolimits_1 \mathop { - V}\nolimits_2 = \mathop {R + r}\nolimits_1 \mathop { + r}\nolimits_2 $
Now,
Putting in equation $(1)$, we get
$\mathop {3V}\nolimits_1 \mathop { - 3V}\nolimits_2 = \mathop V\nolimits_1 \mathop { + V}\nolimits_2 $
After further evaluation, we get
$\mathop {2V}\nolimits_1 = \mathop {4V}\nolimits_2 $
In the question, it is asked for $\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }}$
Thus, we get
\[\frac{{\mathop V\nolimits_1 }}{{\mathop V\nolimits_2 }} = \frac{2}{1}\]
Hence, the answer is (B).
Additional Information: The Kirchhoff’s rules are handy to use in the cases for internal resistance, multiple $emf$ and in the cases indulging potentiometer. These rules are simple and very intuitive. Just that they were placed in a standardized manner by Kirchhoff.
The internal resistance we are talking about is referring to the resistance offered by the battery itself at initiation. This internal resistance value decides about the behavior of the circuit. Though minimal, but still of concern.
Note: We directly evaluated the result due to the application of the Kirchhoff’s law. One should not be confused about the direct relation. It is trivially coming from Kirchhoff's law.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Geostationary and Geosynchronous Satellites Explained

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Diffraction of Light - Young’s Single Slit Experiment

Wheatstone Bridge Explained: Principle, Working, and Uses

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

