
Total energy of an electron in an excited state of a hydrogen atom is $ - 3.4ev$. The kinetic and the potential energy of electron in this state
$
(a){\text{ K = - 3}}{\text{.4ev, U = - 6}}{\text{.8ev}} \\
(b){\text{ K = 3}}{\text{.4ev, U = - 6}}{\text{.8ev}} \\
(c){\text{ K = - 6}}{\text{.8ev, U = + 3}}{\text{.4ev}} \\
(d){\text{ K = + 10}}{\text{.2ev, U = - 13}}{\text{.6ev}} \\
$
Answer
125.1k+ views
Hint: In this question use the concept that the total energy (T.E) is the sum of kinetic energy (K) and the potential energy (U), that is T.E = K + U. Then use the relation that kinetic energy (K) is the modulus of the total energy (T.E) and potential energy (U) is the double of the total energy (T.E) such that the total energy which is the sum of kinetic energy and potential energy is the same. This will help approaching the problem statement.
Complete step-by-step solution -
Given data:
Total energy of an electron in an excited state of hydrogen atom is -3.4eV
Now we have to find out the kinetic and potential energy of electrons in this state.
As we know that the total energy (T.E) is the sum of kinetic energy (K) and the potential energy (U)
Therefore, T.E = K + U
Now as we know that kinetic energy (K) is the modulus of the total energy (T.E).
$ \Rightarrow K = \left| {T.E} \right|$= |-3.4| = 3.4eV
As modulus of any negative quantity is positive.
And the potential energy (U) is the double of the total energy (T.E) so that the total energy which is the sum of kinetic energy and potential energy is the same.
$ \Rightarrow U = 2\left( {T.E} \right)$ = 2(-3.4) = -6.8eV
So the total energy, T.E = K + U = 3.4 + (-6.8) = -3.4eV which is the same as the above total energy.
So kinetic energy of electron in this state is, K = 3.4eV
And potential energy of electron in this state is, U = -6.8eV
So this is the required answer.
Hence option (B) is the correct answer.
Note – In quantum mechanics excited state can be considered as any quantum state that is at higher energy level from the ground. The ground state basically depicts the lowest energy levels that an atom can have.
Complete step-by-step solution -
Given data:
Total energy of an electron in an excited state of hydrogen atom is -3.4eV
Now we have to find out the kinetic and potential energy of electrons in this state.
As we know that the total energy (T.E) is the sum of kinetic energy (K) and the potential energy (U)
Therefore, T.E = K + U
Now as we know that kinetic energy (K) is the modulus of the total energy (T.E).
$ \Rightarrow K = \left| {T.E} \right|$= |-3.4| = 3.4eV
As modulus of any negative quantity is positive.
And the potential energy (U) is the double of the total energy (T.E) so that the total energy which is the sum of kinetic energy and potential energy is the same.
$ \Rightarrow U = 2\left( {T.E} \right)$ = 2(-3.4) = -6.8eV
So the total energy, T.E = K + U = 3.4 + (-6.8) = -3.4eV which is the same as the above total energy.
So kinetic energy of electron in this state is, K = 3.4eV
And potential energy of electron in this state is, U = -6.8eV
So this is the required answer.
Hence option (B) is the correct answer.
Note – In quantum mechanics excited state can be considered as any quantum state that is at higher energy level from the ground. The ground state basically depicts the lowest energy levels that an atom can have.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main Login 2045: Step-by-Step Instructions and Details

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
