
To observe diffraction, the size of the obstacle:
A) Has no relation to wavelength.
B) Should be $\lambda /2$ where $\lambda $ is the wavelength.
C) Should be much larger than the wavelength.
D) Should be of the order of wavelength.
Answer
232.8k+ views
Hint: When the wave of light passes through the particles of the obstacle object and due to the sudden change in densities, the speed of light changes which give birth to the phenomenon of diffraction. Use the basic knowledge of diffraction and apply it to reality to answer this question.
Complete answer:
We know that diffraction takes place when a wave of light passes through the particles of an obstacle object whose density is different from that of the medium in which light was moving previously, and hence the speed of light changes which result in diffraction. Using this definition and the basic concepts of diffraction, we will solve the question by looking at the options one by one.
Option A: Has no relation to wavelength
This option is obviously incorrect as wavelength is one of the main deciding components about the extent of diffraction in a medium.
Option B: Should be $\lambda /2$ where $\lambda $ is the wavelength
If the wavelength is equal to $\lambda $ , then $\lambda /2$ the size of the obstacle particle will be too small for an observer to observe diffraction through it.
This option is also incorrect.
Option C: Should be much larger than the wavelength
If the size of the obstacle particle is much, much larger than the wavelength, then the diffraction won’t take place at all. This can be considered as a law for diffraction.
Hence, this option is also incorrect.
Option D: Should be of the order of the wavelength
If the size of the obstacle particle is of the order of the wavelength, diffraction will take place and will be easily observable by the observer.
Hence, option D is the correct answer.
Note: Diffraction is a phenomenon which takes place under some specific conditions. However, these conditions are quite vast and it appears like diffraction can take place under any circumstances, but it is not the truth. Like in option C, diffraction won’t take place if the size of the obstacle particle is much, much larger than the wavelength of the ray of light.
Complete answer:
We know that diffraction takes place when a wave of light passes through the particles of an obstacle object whose density is different from that of the medium in which light was moving previously, and hence the speed of light changes which result in diffraction. Using this definition and the basic concepts of diffraction, we will solve the question by looking at the options one by one.
Option A: Has no relation to wavelength
This option is obviously incorrect as wavelength is one of the main deciding components about the extent of diffraction in a medium.
Option B: Should be $\lambda /2$ where $\lambda $ is the wavelength
If the wavelength is equal to $\lambda $ , then $\lambda /2$ the size of the obstacle particle will be too small for an observer to observe diffraction through it.
This option is also incorrect.
Option C: Should be much larger than the wavelength
If the size of the obstacle particle is much, much larger than the wavelength, then the diffraction won’t take place at all. This can be considered as a law for diffraction.
Hence, this option is also incorrect.
Option D: Should be of the order of the wavelength
If the size of the obstacle particle is of the order of the wavelength, diffraction will take place and will be easily observable by the observer.
Hence, option D is the correct answer.
Note: Diffraction is a phenomenon which takes place under some specific conditions. However, these conditions are quite vast and it appears like diffraction can take place under any circumstances, but it is not the truth. Like in option C, diffraction won’t take place if the size of the obstacle particle is much, much larger than the wavelength of the ray of light.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

