
Three particles, each having a charge of $10 \mu C$ are placed at the corners of an equilateral triangle of side $10 cm$. The electric potential energy of the system is:
(Given, $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$ )
A) $Zero$
B) $Infinite$
C) $27 J$
D) $100 J$
Answer
144.9k+ views
Hint: Given that three charged particles are placed at the corners of an equilateral triangle. The length of the sides of the triangle is given and the charges are known. Therefore we can find the electric potential energy due to any two charges at a time. Lastly, to find the total electric potential of the system, we have to find the sum of the electric potentials.
Formula used:
Potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Complete step by step solution:
Three particles are placed at the corners A, B and C of an equilateral triangle of side 10 cm. Each of the particles carries a charge of $10 \mu C$.
$Q = 10 \mu C$
Distance between any two charges, r = 10 cm = 0.1 m
Now, potential energy due to a particle carrying charge Q is given by
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Let, potential energy of the charges at A and B be given by ${E_{AB}}$
$\Rightarrow {E_{AB}} = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{{{Q^2}}}{r}$
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{\left( {10 \times {{10}^{ - 6}}} \right)}^2}}}{{0.1}}$ J (substituting$\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$)
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{10}^{ - 10}}}}{{0.1}}$ $J$
$ \Rightarrow 9 \times {10^9} \times {10^{ - 9}}$ $J$
$ \Rightarrow 9$ $J$
Similarly, we can show that ${{{E}}_{{{BC}}}} = {{{E}}_{{{AC}}}} = {{9 J}}$
Therefore, total potential energy of the system is given by,
$\Rightarrow {E_{total}} = {E_{AB}} + {E_{BC}} + {E_{AC}} = \left( {9 + 9 + 9} \right){{ J}} = {{ }}27{{ J}}$
Hence, the correct answer is option (C).
Note: We know, potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$.
Note that in the given data, Coulomb is an SI unit while the unit of length is given in CGS. Therefore we will have to convert all the units either in CGS or in SI.
Formula used:
Potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Complete step by step solution:
Three particles are placed at the corners A, B and C of an equilateral triangle of side 10 cm. Each of the particles carries a charge of $10 \mu C$.
$Q = 10 \mu C$
Distance between any two charges, r = 10 cm = 0.1 m
Now, potential energy due to a particle carrying charge Q is given by
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Let, potential energy of the charges at A and B be given by ${E_{AB}}$
$\Rightarrow {E_{AB}} = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{{{Q^2}}}{r}$
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{\left( {10 \times {{10}^{ - 6}}} \right)}^2}}}{{0.1}}$ J (substituting$\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$)
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{10}^{ - 10}}}}{{0.1}}$ $J$
$ \Rightarrow 9 \times {10^9} \times {10^{ - 9}}$ $J$
$ \Rightarrow 9$ $J$
Similarly, we can show that ${{{E}}_{{{BC}}}} = {{{E}}_{{{AC}}}} = {{9 J}}$
Therefore, total potential energy of the system is given by,
$\Rightarrow {E_{total}} = {E_{AB}} + {E_{BC}} + {E_{AC}} = \left( {9 + 9 + 9} \right){{ J}} = {{ }}27{{ J}}$
Hence, the correct answer is option (C).
Note: We know, potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$.
Note that in the given data, Coulomb is an SI unit while the unit of length is given in CGS. Therefore we will have to convert all the units either in CGS or in SI.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
