
Three particles, each having a charge of $10 \mu C$ are placed at the corners of an equilateral triangle of side $10 cm$. The electric potential energy of the system is:
(Given, $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$ )
A) $Zero$
B) $Infinite$
C) $27 J$
D) $100 J$
Answer
216.6k+ views
Hint: Given that three charged particles are placed at the corners of an equilateral triangle. The length of the sides of the triangle is given and the charges are known. Therefore we can find the electric potential energy due to any two charges at a time. Lastly, to find the total electric potential of the system, we have to find the sum of the electric potentials.
Formula used:
Potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Complete step by step solution:
Three particles are placed at the corners A, B and C of an equilateral triangle of side 10 cm. Each of the particles carries a charge of $10 \mu C$.
$Q = 10 \mu C$
Distance between any two charges, r = 10 cm = 0.1 m
Now, potential energy due to a particle carrying charge Q is given by
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Let, potential energy of the charges at A and B be given by ${E_{AB}}$
$\Rightarrow {E_{AB}} = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{{{Q^2}}}{r}$
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{\left( {10 \times {{10}^{ - 6}}} \right)}^2}}}{{0.1}}$ J (substituting$\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$)
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{10}^{ - 10}}}}{{0.1}}$ $J$
$ \Rightarrow 9 \times {10^9} \times {10^{ - 9}}$ $J$
$ \Rightarrow 9$ $J$
Similarly, we can show that ${{{E}}_{{{BC}}}} = {{{E}}_{{{AC}}}} = {{9 J}}$
Therefore, total potential energy of the system is given by,
$\Rightarrow {E_{total}} = {E_{AB}} + {E_{BC}} + {E_{AC}} = \left( {9 + 9 + 9} \right){{ J}} = {{ }}27{{ J}}$
Hence, the correct answer is option (C).
Note: We know, potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$.
Note that in the given data, Coulomb is an SI unit while the unit of length is given in CGS. Therefore we will have to convert all the units either in CGS or in SI.
Formula used:
Potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Complete step by step solution:
Three particles are placed at the corners A, B and C of an equilateral triangle of side 10 cm. Each of the particles carries a charge of $10 \mu C$.
$Q = 10 \mu C$
Distance between any two charges, r = 10 cm = 0.1 m
Now, potential energy due to a particle carrying charge Q is given by
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Let, potential energy of the charges at A and B be given by ${E_{AB}}$
$\Rightarrow {E_{AB}} = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{{{Q^2}}}{r}$
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{\left( {10 \times {{10}^{ - 6}}} \right)}^2}}}{{0.1}}$ J (substituting$\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$)
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{10}^{ - 10}}}}{{0.1}}$ $J$
$ \Rightarrow 9 \times {10^9} \times {10^{ - 9}}$ $J$
$ \Rightarrow 9$ $J$
Similarly, we can show that ${{{E}}_{{{BC}}}} = {{{E}}_{{{AC}}}} = {{9 J}}$
Therefore, total potential energy of the system is given by,
$\Rightarrow {E_{total}} = {E_{AB}} + {E_{BC}} + {E_{AC}} = \left( {9 + 9 + 9} \right){{ J}} = {{ }}27{{ J}}$
Hence, the correct answer is option (C).
Note: We know, potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$.
Note that in the given data, Coulomb is an SI unit while the unit of length is given in CGS. Therefore we will have to convert all the units either in CGS or in SI.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

Diffraction of Light - Young’s Single Slit Experiment

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

