
Three concentric metal shells A, B and C of respectively radii $a$, $b$ & $c$($a < b < c$) have surface charge densities $ + \sigma $, $ - \sigma $ and $ + \sigma $ respectively. The potential of shell B is?
A) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{b^2} - {c^2}}}{b} + a} \right]\]
B) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{b^2} - {c^2}}}{c} + a} \right]\]
C) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{a} + c} \right]\]
D) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\]
Answer
145.8k+ views
Hint: Remember that, potential of a shell will be affected by the charge enclosed in the nearby shells. If the distance between them is smaller when compared to the radius, take radius as the distance, If not take distance between them.
Complete step by step solution:
Let’s define all the data given in the question:
Radii of shell A= $a$
Radii of shell B= $b$
Radii of shell C= $c$
Surface charge density of shell A= $ + \sigma $
Surface charge density of shell B= $ - \sigma $
Surface charge density of shell C= $ + \sigma $
We need to find the potential of shell B.
Potential of shell B will be affected by the charge enclosed in all the three shells, so we get,
${V_B} = \dfrac{{K{q_A}}}{b} + \dfrac{{K{q_B}}}{b} + \dfrac{{K{q_C}}}{c}$
${q_A}$ = the charges enclosed in shell A.
\[{q_B}\] = the charges enclosed in shell B.
${q_C}$ = the charges enclosed in shell C.
The charges enclosed in the shell A,
${q_A} = \sigma (4\pi {a^2})$
The charges enclosed in the shell B,
\[{q_B} = - \sigma (4\pi {b^2})\]
The charges enclosed in the shell C,
${q_C} = \sigma (4\pi {c^2})$
K is a constant and which is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
(${\varepsilon _0}$ is the permittivity in vacuum)
Apply these values to the equation for potential of B, we get,
$ \Rightarrow {V_B} = \dfrac{{\sigma 4\pi }}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - \dfrac{{{b^2}}}{b} + \dfrac{{{c^2}}}{c}} \right]$
Some of the terms gets cancelled:
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - b + c} \right]$
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]$
No we get the value of the potential of the shell B;
So the final answer is option (D). \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\].
Note: The electric potential difference between the inner and outer surface of different states of the object is described as the surface charge. The surface charge density describes the whole amount of charge per unit amount of the area and it will be there only in conducting surfaces. And in a particular field, the charge density describes how much the electric charge is accumulated.
Complete step by step solution:
Let’s define all the data given in the question:
Radii of shell A= $a$
Radii of shell B= $b$
Radii of shell C= $c$
Surface charge density of shell A= $ + \sigma $
Surface charge density of shell B= $ - \sigma $
Surface charge density of shell C= $ + \sigma $
We need to find the potential of shell B.
Potential of shell B will be affected by the charge enclosed in all the three shells, so we get,
${V_B} = \dfrac{{K{q_A}}}{b} + \dfrac{{K{q_B}}}{b} + \dfrac{{K{q_C}}}{c}$
${q_A}$ = the charges enclosed in shell A.
\[{q_B}\] = the charges enclosed in shell B.
${q_C}$ = the charges enclosed in shell C.
The charges enclosed in the shell A,
${q_A} = \sigma (4\pi {a^2})$
The charges enclosed in the shell B,
\[{q_B} = - \sigma (4\pi {b^2})\]
The charges enclosed in the shell C,
${q_C} = \sigma (4\pi {c^2})$
K is a constant and which is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
(${\varepsilon _0}$ is the permittivity in vacuum)
Apply these values to the equation for potential of B, we get,
$ \Rightarrow {V_B} = \dfrac{{\sigma 4\pi }}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - \dfrac{{{b^2}}}{b} + \dfrac{{{c^2}}}{c}} \right]$
Some of the terms gets cancelled:
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - b + c} \right]$
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]$
No we get the value of the potential of the shell B;
So the final answer is option (D). \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\].
Note: The electric potential difference between the inner and outer surface of different states of the object is described as the surface charge. The surface charge density describes the whole amount of charge per unit amount of the area and it will be there only in conducting surfaces. And in a particular field, the charge density describes how much the electric charge is accumulated.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
