Answer
Verified
85.5k+ views
Hint: We will first consider the given data and then we will find the factors of the given values 75 and 45. After this we need to find the maximum number of flowers contained in one bouquet by finding the highest common factor obtained from the factors of 75 and 45. Next to find the number of flowers in the bouquet can be found by adding the factors of highest common factors.
Complete step by step solution:
First consider the number of roses that is 75 and number of lilies that is 45.
Now, we will find the factors of number 75
We get,
Factors of \[75 = 3 \times 5 \times 5\]
Next, we will find the factors of the number 45,
Thus, we have,
\[ \Rightarrow 45 = 3 \times 3 \times 5\]
Now, to determine the maximum number of flowers contained in one bouquet, we are required to find the highest common factor (H.C.F) from these two factors.
Thus, the common factors from both the numbers are 3 and 5
Thus, we get the H.C.F. as,
\[ \Rightarrow 3 \times 5 = 15\]
Hence, the numbers of flowers contained in one bouquet are \[15\].
And the numbers of flowers in the bouquets can be found by adding 3 and 5
Thus, we get,
\[ \Rightarrow 3 + 5 = 8\].
Which means the number of rose flowers in the bouquets is 5 and the number of lily flowers in the bouquets is 3.
Note: Do not think to find out the LCM, if we find the LCM then we get the minimum number of flowers, so that answer can be wrong. To find the maximum number of flowers, the highest common factor has to be calculated. To find the total numbers just add the common factors obtained from the factorization.
Complete step by step solution:
First consider the number of roses that is 75 and number of lilies that is 45.
Now, we will find the factors of number 75
We get,
Factors of \[75 = 3 \times 5 \times 5\]
Next, we will find the factors of the number 45,
Thus, we have,
\[ \Rightarrow 45 = 3 \times 3 \times 5\]
Now, to determine the maximum number of flowers contained in one bouquet, we are required to find the highest common factor (H.C.F) from these two factors.
Thus, the common factors from both the numbers are 3 and 5
Thus, we get the H.C.F. as,
\[ \Rightarrow 3 \times 5 = 15\]
Hence, the numbers of flowers contained in one bouquet are \[15\].
And the numbers of flowers in the bouquets can be found by adding 3 and 5
Thus, we get,
\[ \Rightarrow 3 + 5 = 8\].
Which means the number of rose flowers in the bouquets is 5 and the number of lily flowers in the bouquets is 3.
Note: Do not think to find out the LCM, if we find the LCM then we get the minimum number of flowers, so that answer can be wrong. To find the maximum number of flowers, the highest common factor has to be calculated. To find the total numbers just add the common factors obtained from the factorization.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main