
The work function of a photoelectric material is 4 eV. (a) What is the threshold wavelength? (b) Find the wavelength of light for which the stopping potential is \[2.5{\text{ }}V.\]
Answer
218.4k+ views
Hint: The threshold wavelength corresponds to the work function of a photoelectric material and is inversely proportional to it. The stopping corresponds to the potential required to stop electrons ejected from the photoelectric material.
Formula used: In this solution, we will use the following formula:
$\phi = \dfrac{{hc}}{{{\lambda _{thresh}}}}$ where $h$ is the Planck’s constant, $c$ is the speed of light, and ${\lambda _{thresh}}$ is the wavelength of the photon
Complete step by step answer:
We’ve been given the work function of a photoelectric material as 4 eV. The threshold wavelength of the material corresponds to the energy that the incoming photon must have to cause the photoelectric effect. Since the incoming photon must have energy equal to the work function of the material, we can calculate the threshold wavelength as
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 4\, \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 3.1 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 310\,nm\]
Hence the threshold wavelength of the material is 310 nm. The incoming photon must have a wavelength less than or equal to this value.
b) Now we know that the stopping potential is \[2.5{\text{ }}V.\] and we want to find the corresponding threshold wavelength. So again, using the formula
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 2.5 \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 1.91 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 190\,nm\]
Note: The threshold wavelength corresponds to the work function of the material and if a photon corresponding to the threshold wavelength is incident on the material, the ejected electron will have no kinetic energy and will eventually recombine with the metal. To have a non-zero ejected electron velocity, the wavelength of the photon must be less than the threshold wavelength.
Formula used: In this solution, we will use the following formula:
$\phi = \dfrac{{hc}}{{{\lambda _{thresh}}}}$ where $h$ is the Planck’s constant, $c$ is the speed of light, and ${\lambda _{thresh}}$ is the wavelength of the photon
Complete step by step answer:
We’ve been given the work function of a photoelectric material as 4 eV. The threshold wavelength of the material corresponds to the energy that the incoming photon must have to cause the photoelectric effect. Since the incoming photon must have energy equal to the work function of the material, we can calculate the threshold wavelength as
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 4\, \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 3.1 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 310\,nm\]
Hence the threshold wavelength of the material is 310 nm. The incoming photon must have a wavelength less than or equal to this value.
b) Now we know that the stopping potential is \[2.5{\text{ }}V.\] and we want to find the corresponding threshold wavelength. So again, using the formula
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 2.5 \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 1.91 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 190\,nm\]
Note: The threshold wavelength corresponds to the work function of the material and if a photon corresponding to the threshold wavelength is incident on the material, the ejected electron will have no kinetic energy and will eventually recombine with the metal. To have a non-zero ejected electron velocity, the wavelength of the photon must be less than the threshold wavelength.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

