
The work function of a metal surface is 2.4eV. Calculate
(i) Maximum wavelength of the photon which can eject electrons from the metal.
(ii) The maximum kinetic energy of photoelectrons emitted by a photon of \[3eV\] energy.
(iii) The retarding potential to stop the emission.
Answer
218.7k+ views
Hint: In the given question, we have to analyse the photoelectric effect from a metal surface. We have been given the work function of the metal surface and we are asked to find out the maximum wavelength that initiates photoelectric emissions. We all know that the maximum wavelength corresponds to the minimum energy of the photon and the minimum energy photon that can initiate photoelectric emission has an energy equal to the work function of the metal. Similarly, once we find the maximum kinetic energy of photoelectrons emitted, we can use that energy to find the retarding potential. Let’s see the detailed solution given below.
Formula Used: \[E=\dfrac{hc}{\lambda }\] , \[K=E-\phi \] , \[V=\dfrac{K}{e}\]
Complete step by step solution:
As discussed above, the maximum wavelength of the photon which can eject electrons from the metal will have energy equal to the work function of the metal.
We know that the relation between the energy of the photon, the speed of electromagnetic radiation, the Planck’s constant, and the wavelength of the photon is given as \[E=\dfrac{hc}{\lambda }\] where \[h\] is the Planck’s constant, \[c\] is the speed of light and, \[\lambda \] is the wavelength of the photon
In the case of maximum wavelength, the energy is the same as the work function, so the equation now becomes \[\phi =\dfrac{hc}{\lambda }\]
Work function, $\phi = 2.4eV = 2.4 \times 1.6 \times {10^{ - 19}}J(\because 1eV = 1.6 \times {10^{ - 19}}J)$
Rearranging the quantities and substituting the values, we get
\[\begin{align}
& \lambda =\dfrac{hc}{\phi } \\
& \Rightarrow \lambda =\dfrac{6.62\times {{10}^{-34}}\times 3\times {{10}^{8}}}{2.4\times 1.6\times {{10}^{-19}}}\left[ \because \left( h \right)=6.62\times {{10}^{-34}},\left( c \right)=3\times {{10}^{8}} \right] \\
& \Rightarrow \lambda =5.17\times {{10}^{-7}}m \\
\end{align}\]
The relation between the maximum kinetic energy of the emitted photon, the energy of the incident photon, and the work function can be given as \[K=E-\phi \] where \[K\] is the maximum kinetic energy of the emitted photon, \[E\] is the energy of the incident photon and \[\phi \] is the work function of the metal
Energy of the incident photon, $E = 3eV$
Substituting the values in the above equation, we get
\[\begin{align}
& K=E-\phi \\
& \Rightarrow K=\left( 3-2.4 \right)eV \\
& \Rightarrow K=0.6eV \\
\end{align}\]
The potential that stops the emitted photon from having maximum kinetic energy is known as the retarding potential.
The retarding potential of the metal can be given as \[(V)=\dfrac{K}{e}\] where \[K\] is the maximum kinetic energy of the emitted photon and \[e\] is the elementary charge
Substituting the values, we get
\[\begin{align}
& V=\dfrac{K}{e} \\
& \Rightarrow V=\dfrac{0.6eV}{e}=0.6V \\
\end{align}\]
Note:
For reaching the correct answer, we should be aware of the basics of the photoelectric effect. When the photon is incident on a metal surface, an energy equal to the work function of the metal is lost and the remaining energy is manifested in the emitted photon as the kinetic energy. Students should also know that division of energy in electron-volts with the elementary charge gives the voltage in volts.
Formula Used: \[E=\dfrac{hc}{\lambda }\] , \[K=E-\phi \] , \[V=\dfrac{K}{e}\]
Complete step by step solution:
As discussed above, the maximum wavelength of the photon which can eject electrons from the metal will have energy equal to the work function of the metal.
We know that the relation between the energy of the photon, the speed of electromagnetic radiation, the Planck’s constant, and the wavelength of the photon is given as \[E=\dfrac{hc}{\lambda }\] where \[h\] is the Planck’s constant, \[c\] is the speed of light and, \[\lambda \] is the wavelength of the photon
In the case of maximum wavelength, the energy is the same as the work function, so the equation now becomes \[\phi =\dfrac{hc}{\lambda }\]
Work function, $\phi = 2.4eV = 2.4 \times 1.6 \times {10^{ - 19}}J(\because 1eV = 1.6 \times {10^{ - 19}}J)$
Rearranging the quantities and substituting the values, we get
\[\begin{align}
& \lambda =\dfrac{hc}{\phi } \\
& \Rightarrow \lambda =\dfrac{6.62\times {{10}^{-34}}\times 3\times {{10}^{8}}}{2.4\times 1.6\times {{10}^{-19}}}\left[ \because \left( h \right)=6.62\times {{10}^{-34}},\left( c \right)=3\times {{10}^{8}} \right] \\
& \Rightarrow \lambda =5.17\times {{10}^{-7}}m \\
\end{align}\]
The relation between the maximum kinetic energy of the emitted photon, the energy of the incident photon, and the work function can be given as \[K=E-\phi \] where \[K\] is the maximum kinetic energy of the emitted photon, \[E\] is the energy of the incident photon and \[\phi \] is the work function of the metal
Energy of the incident photon, $E = 3eV$
Substituting the values in the above equation, we get
\[\begin{align}
& K=E-\phi \\
& \Rightarrow K=\left( 3-2.4 \right)eV \\
& \Rightarrow K=0.6eV \\
\end{align}\]
The potential that stops the emitted photon from having maximum kinetic energy is known as the retarding potential.
The retarding potential of the metal can be given as \[(V)=\dfrac{K}{e}\] where \[K\] is the maximum kinetic energy of the emitted photon and \[e\] is the elementary charge
Substituting the values, we get
\[\begin{align}
& V=\dfrac{K}{e} \\
& \Rightarrow V=\dfrac{0.6eV}{e}=0.6V \\
\end{align}\]
Note:
For reaching the correct answer, we should be aware of the basics of the photoelectric effect. When the photon is incident on a metal surface, an energy equal to the work function of the metal is lost and the remaining energy is manifested in the emitted photon as the kinetic energy. Students should also know that division of energy in electron-volts with the elementary charge gives the voltage in volts.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

