The work done in lifting a stone of mass $10\,kg$ and specific gravity $3$ from the bed of a lake to a height of $6\,m$ inside the water is: (Take acceleration due to gravity as $10\,m{s^{ - 2}}$, and neglect the effect of viscous forces).
(A) $200\,J$
(B) $600\,J$
(C) $400\,J$
(D) $800\,J$
Answer
Verified
119.1k+ views
Hint: The work done to lift the stone inside the water is equal to the product of the apparent weight of the stone and the displacement of the stone inside the water. The apparent weight is equal to the total weight of the stone subtracted from the buoyant force on the stone by the water.
Useful formula
The apparent weight of the stone inside the water is given by,
$AW = mg - {F_B}$
Where, $AW$ is the apparent weight, $m$ is the mass of the stone, $g$ is the acceleration due to gravity and ${F_B}$ is the buoyant force.
The buoyant force of the object inside the water is given by,
${F_B} = V{\rho _w}g$
Where, ${F_B}$ is the buoyant force, $V$ is the volume of the object, ${\rho _w}$ is the density of the water and $g$ is the acceleration due to gravity.
The work done is given by,
$W = AW \times h$
Where, $W$ is the work done, $AW$ is the apparent weight and $h$ is the displacement.
Complete step by step solution
Given that,
The mass of the stone is, $m = 10\,kg$,
The specific gravity is, $\dfrac{{{\rho _s}}}{{{\rho _w}}} = 3$,
The displacement of the stone, $h = 6\,m$,
The acceleration due to gravity is, $g = 10\,m{s^{ - 2}}$
Now,
The apparent weight of the stone inside the water is given by,
$AW = mg - {F_B}\,....................\left( 1 \right)$
Now,
The buoyant force of the object inside the water is given by,
${F_B} = V{\rho _w}g\,................\left( 2 \right)$
Already we know that the volume is equal to the $\dfrac{m}{\rho }$, here the volume is the volume of the object, so substitute the value of mass of the stone and density of the stone, then
${F_B} = \dfrac{m}{{{\rho _s}}}{\rho _w}g$
By rearranging the terms, then
${F_B} = m\dfrac{{{\rho _w}}}{{{\rho _s}}}g$
By the given specific gravity value, then the above equation is written as,
${F_B} = \dfrac{{mg}}{3}$
By substituting the above equation in the equation (1), then the equation (1) is written as,
$AW = mg - \dfrac{{mg}}{3}\,.....................\left( 3 \right)$
Now,
The work done is given by,
$W = AW \times h\,................\left( 4 \right)$
By substituting the equation (3) in the equation (4), then
$W = \left( {mg - \dfrac{{mg}}{3}} \right)\, \times h$
By taking the terms common, then the above equation is written as,
$W = \left( {1 - \dfrac{1}{3}} \right)\, \times mgh$
By cross multiplying the terms, then the above equation is written as,
$W = \left( {\dfrac{{3 - 1}}{3}} \right)\, \times mgh$
On further simplification, then the above equation is written as,
$W = \left( {\dfrac{2}{3}} \right)\, \times mgh$
By substituting the mass, acceleration due to gravity and displacement in the above equation, then
$W = \left( {\dfrac{2}{3}} \right)\, \times 10 \times 10 \times 6$
On multiplying the terms, then
$W = \dfrac{{1200}}{3}$
On dividing the terms, then
$W = 400\,J$
Hence, the option (C) is the correct answer.
Note: In apparent weight the weight of the object is subtracted from the buoyant force because the weight of the force is acting downwards, but the buoyant force is pushing the object upwards, so both are in different directions, so both are subtracted.
Useful formula
The apparent weight of the stone inside the water is given by,
$AW = mg - {F_B}$
Where, $AW$ is the apparent weight, $m$ is the mass of the stone, $g$ is the acceleration due to gravity and ${F_B}$ is the buoyant force.
The buoyant force of the object inside the water is given by,
${F_B} = V{\rho _w}g$
Where, ${F_B}$ is the buoyant force, $V$ is the volume of the object, ${\rho _w}$ is the density of the water and $g$ is the acceleration due to gravity.
The work done is given by,
$W = AW \times h$
Where, $W$ is the work done, $AW$ is the apparent weight and $h$ is the displacement.
Complete step by step solution
Given that,
The mass of the stone is, $m = 10\,kg$,
The specific gravity is, $\dfrac{{{\rho _s}}}{{{\rho _w}}} = 3$,
The displacement of the stone, $h = 6\,m$,
The acceleration due to gravity is, $g = 10\,m{s^{ - 2}}$
Now,
The apparent weight of the stone inside the water is given by,
$AW = mg - {F_B}\,....................\left( 1 \right)$
Now,
The buoyant force of the object inside the water is given by,
${F_B} = V{\rho _w}g\,................\left( 2 \right)$
Already we know that the volume is equal to the $\dfrac{m}{\rho }$, here the volume is the volume of the object, so substitute the value of mass of the stone and density of the stone, then
${F_B} = \dfrac{m}{{{\rho _s}}}{\rho _w}g$
By rearranging the terms, then
${F_B} = m\dfrac{{{\rho _w}}}{{{\rho _s}}}g$
By the given specific gravity value, then the above equation is written as,
${F_B} = \dfrac{{mg}}{3}$
By substituting the above equation in the equation (1), then the equation (1) is written as,
$AW = mg - \dfrac{{mg}}{3}\,.....................\left( 3 \right)$
Now,
The work done is given by,
$W = AW \times h\,................\left( 4 \right)$
By substituting the equation (3) in the equation (4), then
$W = \left( {mg - \dfrac{{mg}}{3}} \right)\, \times h$
By taking the terms common, then the above equation is written as,
$W = \left( {1 - \dfrac{1}{3}} \right)\, \times mgh$
By cross multiplying the terms, then the above equation is written as,
$W = \left( {\dfrac{{3 - 1}}{3}} \right)\, \times mgh$
On further simplification, then the above equation is written as,
$W = \left( {\dfrac{2}{3}} \right)\, \times mgh$
By substituting the mass, acceleration due to gravity and displacement in the above equation, then
$W = \left( {\dfrac{2}{3}} \right)\, \times 10 \times 10 \times 6$
On multiplying the terms, then
$W = \dfrac{{1200}}{3}$
On dividing the terms, then
$W = 400\,J$
Hence, the option (C) is the correct answer.
Note: In apparent weight the weight of the object is subtracted from the buoyant force because the weight of the force is acting downwards, but the buoyant force is pushing the object upwards, so both are in different directions, so both are subtracted.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs