The work done by the force $\mathop {\text{F}}\limits^ \to {\text{ = z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to $ in taking a particle (in one second) from the origin to the point $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$ by shortest path is:
(A) $\dfrac{1}{3}({x_1}^2{y_1} + {y_1}^2{z_1} + {z_1}^2{x_1})$
(B) $\dfrac{1}{2}({x_1}{y_1} + {y_1}{z_1} + {z_1}{x_1})$
(C) $\dfrac{1}{3}({x_1}{y_1} + {y_1}{z_1} + {z_1}{x_1})$
(D) $\dfrac{1}{4}({x_1}{y_1} + {y_1}{z_1} - {z_1}{x_1})$
Answer
Verified
117.9k+ views
Hint We are provided with the force and the displacement points. We have to find the shortest path for the work done. Find the distance between the given two points using distance formula. To find the work done in the shortest path, take integration of the work done from origin to the given point.
Complete step by step answer
Work: Work is defined as the energy transfer from one object to another object.
It is the product of force acting on the object and the distance travelled (displacement) by the object.
$W = F \times s$
Where,
F is the force acting on the object.
s is the displacement.
Force is defined as the product of mass and acceleration of an object. It is a vector quantity. It has both magnitude and direction
Given that,
Force, $\mathop {\text{F}}\limits^ \to {\text{ = z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to $
The point of origin is $(0,0,0)$
The another point is $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
The work done by the given vector of force in taking a particle from origin to the given point by shortest path is given by the formula
$\dfrac{{x - {x_0}}}{{{x_0} - {x_1}}} = \dfrac{{y - {y_0}}}{{{y_0} - {y_1}}} = \dfrac{{z - {z_0}}}{{{z_0} - {z_1}}}$ for two points $({{\text{x}}_0}{\text{, }}{{\text{y}}_0},{\text{ }}{{\text{z}}_0})$ and $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
The above mentioned formula is used to find the distance between two points.
We have to find the distance between the points $(0,0,0)$ and $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
Using the formula we get
$ \Rightarrow \dfrac{{x - 0}}{{0 - {x_1}}} = \dfrac{{y - 0}}{{0 - {y_1}}} = \dfrac{{z - 0}}{{0 - {z_1}}}$
$ \Rightarrow \dfrac{x}{{ - {x_1}}} = \dfrac{y}{{ - {y_1}}} = \dfrac{z}{{ - {z_1}}}$
Let us say this is equal to t (t is a variable)
$ \Rightarrow \dfrac{x}{{{x_1}}} = \dfrac{y}{{{y_1}}} = \dfrac{z}{{{z_1}}} = t$
Differentiate both sides with respect to x and t
$ \Rightarrow dx = {x_1}{\text{dt ; dy = }}{{\text{y}}_1}{\text{dt ; dz = }}{{\text{z}}_1}dt{\text{ }} \to {\text{1}}$
Given, $\mathop {\text{F}}\limits^ \to {\text{ = z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to $
$ \Rightarrow {\text{ }}\mathop r\limits^ \to = x\mathop i\limits^ \to + y\mathop j\limits^ \to + z\mathop k\limits^ \to $ Where $\mathop r\limits^ \to $ is the unit vector.
Work done by the force is $\int {F.dr} $
$ \Rightarrow W = \int\limits_a^b {F.dr} $
Work done by the force in taking the particle from $(0,0,0)$ to $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
$ \Rightarrow W = \int\limits_{(0,0,0)}^{({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})} {\left( {{\text{z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to } \right).} \left( {dx\mathop i\limits^ \to + dy\mathop j\limits^ \to + dz\mathop k\limits^ \to } \right)$
$ \Rightarrow W = \int\limits_{(0,0,0)}^{({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})} {\left( {{\text{zdx}} + xdy + ydz} \right)} {\text{ }} \to {\text{2}}$
Let us take,
$t = 0$ at $(0,0,0)$ when $({\text{x, y, z}}) = (0,0,0)$
$t = 1$ at $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$ when $({\text{x, y, z}}) = ({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
Substitute the above in 2
$ \Rightarrow W = \int\limits_{t = 0}^{t = 1} {\left( {t{z_1}{x_1}dt + t{x_1}{y_1}dt + t{y_1}{z_1}dt} \right)} $
$ \Rightarrow W = \int\limits_{t = 0}^{t = 1} {\left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)tdt} {\text{ }}$
$ \Rightarrow W = \left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\int\limits_{t = 0}^{t = 1} {tdt} {\text{ }}$
\[ \Rightarrow W = \left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\left[ {\dfrac{{{t^2}}}{2}} \right]_0^1\]
\[ \Rightarrow W = \left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\dfrac{1}{2}\]
\[ \Rightarrow W = \dfrac{1}{2}\left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\]
Hence the correct answer is option (B) $\dfrac{1}{2}({x_1}{y_1} + {y_1}{z_1} + {z_1}{x_1})$
Note This problem involves a lot of calculations. To solve this sum first we have to learn the basics vector algebra such as adding and multiplying two vectors. It also involves the algebra i.e. distance between two points in a coordinate plane and basic integration. Revise these topics before solving this sum.
Complete step by step answer
Work: Work is defined as the energy transfer from one object to another object.
It is the product of force acting on the object and the distance travelled (displacement) by the object.
$W = F \times s$
Where,
F is the force acting on the object.
s is the displacement.
Force is defined as the product of mass and acceleration of an object. It is a vector quantity. It has both magnitude and direction
Given that,
Force, $\mathop {\text{F}}\limits^ \to {\text{ = z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to $
The point of origin is $(0,0,0)$
The another point is $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
The work done by the given vector of force in taking a particle from origin to the given point by shortest path is given by the formula
$\dfrac{{x - {x_0}}}{{{x_0} - {x_1}}} = \dfrac{{y - {y_0}}}{{{y_0} - {y_1}}} = \dfrac{{z - {z_0}}}{{{z_0} - {z_1}}}$ for two points $({{\text{x}}_0}{\text{, }}{{\text{y}}_0},{\text{ }}{{\text{z}}_0})$ and $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
The above mentioned formula is used to find the distance between two points.
We have to find the distance between the points $(0,0,0)$ and $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
Using the formula we get
$ \Rightarrow \dfrac{{x - 0}}{{0 - {x_1}}} = \dfrac{{y - 0}}{{0 - {y_1}}} = \dfrac{{z - 0}}{{0 - {z_1}}}$
$ \Rightarrow \dfrac{x}{{ - {x_1}}} = \dfrac{y}{{ - {y_1}}} = \dfrac{z}{{ - {z_1}}}$
Let us say this is equal to t (t is a variable)
$ \Rightarrow \dfrac{x}{{{x_1}}} = \dfrac{y}{{{y_1}}} = \dfrac{z}{{{z_1}}} = t$
Differentiate both sides with respect to x and t
$ \Rightarrow dx = {x_1}{\text{dt ; dy = }}{{\text{y}}_1}{\text{dt ; dz = }}{{\text{z}}_1}dt{\text{ }} \to {\text{1}}$
Given, $\mathop {\text{F}}\limits^ \to {\text{ = z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to $
$ \Rightarrow {\text{ }}\mathop r\limits^ \to = x\mathop i\limits^ \to + y\mathop j\limits^ \to + z\mathop k\limits^ \to $ Where $\mathop r\limits^ \to $ is the unit vector.
Work done by the force is $\int {F.dr} $
$ \Rightarrow W = \int\limits_a^b {F.dr} $
Work done by the force in taking the particle from $(0,0,0)$ to $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
$ \Rightarrow W = \int\limits_{(0,0,0)}^{({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})} {\left( {{\text{z}}\mathop i\limits^ \to + \mathop j\limits^ \to + y\mathop k\limits^ \to } \right).} \left( {dx\mathop i\limits^ \to + dy\mathop j\limits^ \to + dz\mathop k\limits^ \to } \right)$
$ \Rightarrow W = \int\limits_{(0,0,0)}^{({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})} {\left( {{\text{zdx}} + xdy + ydz} \right)} {\text{ }} \to {\text{2}}$
Let us take,
$t = 0$ at $(0,0,0)$ when $({\text{x, y, z}}) = (0,0,0)$
$t = 1$ at $({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$ when $({\text{x, y, z}}) = ({{\text{x}}_1}{\text{, }}{{\text{y}}_1},{\text{ }}{{\text{z}}_1})$
Substitute the above in 2
$ \Rightarrow W = \int\limits_{t = 0}^{t = 1} {\left( {t{z_1}{x_1}dt + t{x_1}{y_1}dt + t{y_1}{z_1}dt} \right)} $
$ \Rightarrow W = \int\limits_{t = 0}^{t = 1} {\left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)tdt} {\text{ }}$
$ \Rightarrow W = \left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\int\limits_{t = 0}^{t = 1} {tdt} {\text{ }}$
\[ \Rightarrow W = \left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\left[ {\dfrac{{{t^2}}}{2}} \right]_0^1\]
\[ \Rightarrow W = \left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\dfrac{1}{2}\]
\[ \Rightarrow W = \dfrac{1}{2}\left( {{z_1}{x_1} + {x_1}{y_1} + {y_1}{z_1}} \right)\]
Hence the correct answer is option (B) $\dfrac{1}{2}({x_1}{y_1} + {y_1}{z_1} + {z_1}{x_1})$
Note This problem involves a lot of calculations. To solve this sum first we have to learn the basics vector algebra such as adding and multiplying two vectors. It also involves the algebra i.e. distance between two points in a coordinate plane and basic integration. Revise these topics before solving this sum.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs