Answer
Verified
87.9k+ views
-Hint:- Convert all the given values to their S.I unit.
Now, evaluate the distance between the first and third minima.
Next, we can now calculate the width of slit by the expression –
$x = \dfrac{{\lambda D}}{d}$
where, $x$ is the distance between first and third minima,
$\lambda $ is the wavelength of light,
$D$ is the distance between screen and slit and
$d$ is the width of slit.
Complete Step by Step Solution:-
Let the distance between first and third minima be $x$ and first minima be ${x_1}$ and third minima be ${x_3}$. Therefore,
$
x = {x_3} - {x_1} \\
x = 3mm \\
x = 3 \times {10^{ - 3}}m \\
$
Let the distance between the screen and single slit be $D$. So, according to the question it is given that –
$
D = 50cm \\
D = 0.5m \\
$
Let the width of slit be $d$ and wavelength of light be $\lambda $.
According to the question, it is given that
$
\lambda = 6000\dot A \\
\lambda = 6000 \times {10^{ - 10}}m \\
$
The position of ${n^{th}}$ minima in the diffraction pattern is given by –
${x_n} = n\dfrac{{D\lambda }}{d}$
The above can also be rewritten by transposition as –
$d = n\dfrac{{D\lambda }}{x} \cdots (1)$
Putting the values of $x,n,D$ and $\lambda $ in their respective places in equation $(1)$
$
d = (3 - 1)\dfrac{{0.5 \times 6000 \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
d = \dfrac{{2 \times 0.5 \times 6 \times {{10}^3} \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
$
By further solving, we get
$
d = \dfrac{{6 \times {{10}^{ - 4}}}}{3} \\
d = 2 \times {10^{ - 4}}m \\
$
Now, converting metre to millimetre, we get
$d = 0.2mm$
Therefore, the correct answer is option (B).
Note:- Diffraction is a specialized case of scattering of light in which an object with regularly repeating features produces an orderly diffraction of light in a diffraction pattern. The diffraction plays an important role in limiting the resolving power of any optical instrument.
Now, evaluate the distance between the first and third minima.
Next, we can now calculate the width of slit by the expression –
$x = \dfrac{{\lambda D}}{d}$
where, $x$ is the distance between first and third minima,
$\lambda $ is the wavelength of light,
$D$ is the distance between screen and slit and
$d$ is the width of slit.
Complete Step by Step Solution:-
Let the distance between first and third minima be $x$ and first minima be ${x_1}$ and third minima be ${x_3}$. Therefore,
$
x = {x_3} - {x_1} \\
x = 3mm \\
x = 3 \times {10^{ - 3}}m \\
$
Let the distance between the screen and single slit be $D$. So, according to the question it is given that –
$
D = 50cm \\
D = 0.5m \\
$
Let the width of slit be $d$ and wavelength of light be $\lambda $.
According to the question, it is given that
$
\lambda = 6000\dot A \\
\lambda = 6000 \times {10^{ - 10}}m \\
$
The position of ${n^{th}}$ minima in the diffraction pattern is given by –
${x_n} = n\dfrac{{D\lambda }}{d}$
The above can also be rewritten by transposition as –
$d = n\dfrac{{D\lambda }}{x} \cdots (1)$
Putting the values of $x,n,D$ and $\lambda $ in their respective places in equation $(1)$
$
d = (3 - 1)\dfrac{{0.5 \times 6000 \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
d = \dfrac{{2 \times 0.5 \times 6 \times {{10}^3} \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
$
By further solving, we get
$
d = \dfrac{{6 \times {{10}^{ - 4}}}}{3} \\
d = 2 \times {10^{ - 4}}m \\
$
Now, converting metre to millimetre, we get
$d = 0.2mm$
Therefore, the correct answer is option (B).
Note:- Diffraction is a specialized case of scattering of light in which an object with regularly repeating features produces an orderly diffraction of light in a diffraction pattern. The diffraction plays an important role in limiting the resolving power of any optical instrument.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main