
What will be the width of the slit if the distance between the first and third minima in the diffraction pattern is $3mm$? The distance between screen and single slit is $50cm$ which is illuminated with light of wavelength $6000\dot A$.
A) $0.1mm$
B) $0.2mm$
C) $0.3mm$
D) $0.4mm$
Answer
170.1k+ views
-Hint:- Convert all the given values to their S.I unit.
Now, evaluate the distance between the first and third minima.
Next, we can now calculate the width of slit by the expression –
$x = \dfrac{{\lambda D}}{d}$
where, $x$ is the distance between first and third minima,
$\lambda $ is the wavelength of light,
$D$ is the distance between screen and slit and
$d$ is the width of slit.
Complete Step by Step Solution:-
Let the distance between first and third minima be $x$ and first minima be ${x_1}$ and third minima be ${x_3}$. Therefore,
$
x = {x_3} - {x_1} \\
x = 3mm \\
x = 3 \times {10^{ - 3}}m \\
$
Let the distance between the screen and single slit be $D$. So, according to the question it is given that –
$
D = 50cm \\
D = 0.5m \\
$
Let the width of slit be $d$ and wavelength of light be $\lambda $.
According to the question, it is given that
$
\lambda = 6000\dot A \\
\lambda = 6000 \times {10^{ - 10}}m \\
$
The position of ${n^{th}}$ minima in the diffraction pattern is given by –
${x_n} = n\dfrac{{D\lambda }}{d}$
The above can also be rewritten by transposition as –
$d = n\dfrac{{D\lambda }}{x} \cdots (1)$
Putting the values of $x,n,D$ and $\lambda $ in their respective places in equation $(1)$
$
d = (3 - 1)\dfrac{{0.5 \times 6000 \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
d = \dfrac{{2 \times 0.5 \times 6 \times {{10}^3} \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
$
By further solving, we get
$
d = \dfrac{{6 \times {{10}^{ - 4}}}}{3} \\
d = 2 \times {10^{ - 4}}m \\
$
Now, converting metre to millimetre, we get
$d = 0.2mm$
Therefore, the correct answer is option (B).
Note:- Diffraction is a specialized case of scattering of light in which an object with regularly repeating features produces an orderly diffraction of light in a diffraction pattern. The diffraction plays an important role in limiting the resolving power of any optical instrument.
Now, evaluate the distance between the first and third minima.
Next, we can now calculate the width of slit by the expression –
$x = \dfrac{{\lambda D}}{d}$
where, $x$ is the distance between first and third minima,
$\lambda $ is the wavelength of light,
$D$ is the distance between screen and slit and
$d$ is the width of slit.
Complete Step by Step Solution:-
Let the distance between first and third minima be $x$ and first minima be ${x_1}$ and third minima be ${x_3}$. Therefore,
$
x = {x_3} - {x_1} \\
x = 3mm \\
x = 3 \times {10^{ - 3}}m \\
$
Let the distance between the screen and single slit be $D$. So, according to the question it is given that –
$
D = 50cm \\
D = 0.5m \\
$
Let the width of slit be $d$ and wavelength of light be $\lambda $.
According to the question, it is given that
$
\lambda = 6000\dot A \\
\lambda = 6000 \times {10^{ - 10}}m \\
$
The position of ${n^{th}}$ minima in the diffraction pattern is given by –
${x_n} = n\dfrac{{D\lambda }}{d}$
The above can also be rewritten by transposition as –
$d = n\dfrac{{D\lambda }}{x} \cdots (1)$
Putting the values of $x,n,D$ and $\lambda $ in their respective places in equation $(1)$
$
d = (3 - 1)\dfrac{{0.5 \times 6000 \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
d = \dfrac{{2 \times 0.5 \times 6 \times {{10}^3} \times {{10}^{ - 10}}}}{{3 \times {{10}^{ - 3}}}} \\
$
By further solving, we get
$
d = \dfrac{{6 \times {{10}^{ - 4}}}}{3} \\
d = 2 \times {10^{ - 4}}m \\
$
Now, converting metre to millimetre, we get
$d = 0.2mm$
Therefore, the correct answer is option (B).
Note:- Diffraction is a specialized case of scattering of light in which an object with regularly repeating features produces an orderly diffraction of light in a diffraction pattern. The diffraction plays an important role in limiting the resolving power of any optical instrument.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Instantaneous Velocity - Formula based Examples for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Charging and Discharging of Capacitor

Important Derivations for CBSE Class 12 Physics (Stepwise Solutions & PDF)

The graph of current versus time in a wire is given class 12 physics JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
