
The weight of one molecule of a compound of molecular formula \[{C_{60}}{H_{122}}\] is:
(A) \[1.2 \times {10^{ - 20}}g\]
(B) \[5.025 \times {10^{ - 20}}g\]
(C) \[1.4 \times {10^{ - 20}}g\]
(D) \[6.023 \times {10^{ - 20}}g\]
Answer
233.1k+ views
Hint: The molecular weight of a compound is equivalent to the sum of all the masses of its constituent atoms. In simpler terms, it is a sum of the product each constituent atom’s atomic weight to the number of atoms of that element present in the compound
Complete Step-by-Step answer:
The atomic mass number of carbon is 12, while the atomic mass number of hydrogen is 1.
In the given compound, we can see that there are 60 atoms of carbon and 122 atoms of hydrogen present. Now the total mass of all these atoms can be calculated as:
Molecular mass of \[{C_{60}}{H_{122}}\]= 60(12) + 122(1)
= 720 + 122
= 844 \[gmo{l^{ - 1}}\]
Hence the molecular mass of \[{C_{60}}{H_{122}}\] is 844 \[gmo{l^{ - 1}}\].
Now this is the weight of one mole of \[{C_{60}}{H_{122}}\]. We know that one mole of any substance contains \[6.022 \times {10^{23}}\] atoms / molecules of the given substance. This number is also known as Avogadro’s Number. From this, we can calculate the mass of one molecule of \[{C_{60}}{H_{122}}\]. Let the mass of one molecule of \[{C_{60}}{H_{122}}\] be ‘x’.
Hence, x = = \[\dfrac{{844}}{{6.022 \times {{10}^{23}}}}\] = \[140.15 \times {10^{23}}\] = \[1.4 \times {10^{ - 20}}g\]
Hence, Option C is the correct option.
Note: Avogadro constant (Avogadro number) The number of molecules, atoms, or ions in one mole of a substance: $6.02252 \times 10^{23}$. It is derived from the number of atoms of the pure isotope 12C in 12 grams of that substance and is the reciprocal of atomic mass in grams.
Complete Step-by-Step answer:
The atomic mass number of carbon is 12, while the atomic mass number of hydrogen is 1.
In the given compound, we can see that there are 60 atoms of carbon and 122 atoms of hydrogen present. Now the total mass of all these atoms can be calculated as:
Molecular mass of \[{C_{60}}{H_{122}}\]= 60(12) + 122(1)
= 720 + 122
= 844 \[gmo{l^{ - 1}}\]
Hence the molecular mass of \[{C_{60}}{H_{122}}\] is 844 \[gmo{l^{ - 1}}\].
Now this is the weight of one mole of \[{C_{60}}{H_{122}}\]. We know that one mole of any substance contains \[6.022 \times {10^{23}}\] atoms / molecules of the given substance. This number is also known as Avogadro’s Number. From this, we can calculate the mass of one molecule of \[{C_{60}}{H_{122}}\]. Let the mass of one molecule of \[{C_{60}}{H_{122}}\] be ‘x’.
Hence, x = = \[\dfrac{{844}}{{6.022 \times {{10}^{23}}}}\] = \[140.15 \times {10^{23}}\] = \[1.4 \times {10^{ - 20}}g\]
Hence, Option C is the correct option.
Note: Avogadro constant (Avogadro number) The number of molecules, atoms, or ions in one mole of a substance: $6.02252 \times 10^{23}$. It is derived from the number of atoms of the pure isotope 12C in 12 grams of that substance and is the reciprocal of atomic mass in grams.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

