
The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly:
A. $1.2nm$
B. $1.2 \times {10^{ - 3}}nm$
C. $1.2 \times {10^{ - 6}}nm$
D. $1.2 \times {10^1}nm$
Answer
148.8k+ views
Hint: Equate the energy given to remove the proton from its nucleus with the energy of the photon. Energy of a photon is inversely proportional to its wavelength.
Complete answer:
Energy required to remove proton from its nucleus $ = 1MeV = {10^6}eV$
If $\lambda $ is the wavelength of the photon needed to remove the proton, then its energy (in Joules) is given by following relation,
$ \Rightarrow E = \dfrac{{hc}}{\lambda }$, where $h = 6.63 \times {10^{ - 34}}Js$ is Planck’s constant and $c = 3 \times {10^8}m/s$ is the speed of electromagnetic radiation in vacuum.
But, $1eV = 1.66 \times {10^{ - 19}}J$.
To remove the nucleus from its proton, the photon should carry energy equal to one required as mentioned before. Therefore, substituting the values of the constants, we get,
$
\Rightarrow E = \dfrac{{hc}}{\lambda } = {10^6} \times (1.66 \times {10^{ - 19}}) \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.66 \times {{10}^{ - 13}}}} = \dfrac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.66 \times {{10}^{ - 13}}}} \\
\Rightarrow \lambda = 1.2 \times {10^{ - 12}}m \\
$
Now, if we check the options then we find that the units are in $nm = {10^{ - 9}}m$.
So, $\lambda = 1.2 \times {10^{ - 9}} \times {10^{ - 3}}m = 1.2 \times {10^{ - 3}}nm$.
Comparing the options with the final result, we can conclude that option B is correct.
Note: Generally, the value of constants are provided in most of the examinations you will come across in future, but it is still advisable to remember some constants, like the ones used above along with the units. Be careful with powers of 10 while multiplication and division.
Complete answer:
Energy required to remove proton from its nucleus $ = 1MeV = {10^6}eV$
If $\lambda $ is the wavelength of the photon needed to remove the proton, then its energy (in Joules) is given by following relation,
$ \Rightarrow E = \dfrac{{hc}}{\lambda }$, where $h = 6.63 \times {10^{ - 34}}Js$ is Planck’s constant and $c = 3 \times {10^8}m/s$ is the speed of electromagnetic radiation in vacuum.
But, $1eV = 1.66 \times {10^{ - 19}}J$.
To remove the nucleus from its proton, the photon should carry energy equal to one required as mentioned before. Therefore, substituting the values of the constants, we get,
$
\Rightarrow E = \dfrac{{hc}}{\lambda } = {10^6} \times (1.66 \times {10^{ - 19}}) \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.66 \times {{10}^{ - 13}}}} = \dfrac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.66 \times {{10}^{ - 13}}}} \\
\Rightarrow \lambda = 1.2 \times {10^{ - 12}}m \\
$
Now, if we check the options then we find that the units are in $nm = {10^{ - 9}}m$.
So, $\lambda = 1.2 \times {10^{ - 9}} \times {10^{ - 3}}m = 1.2 \times {10^{ - 3}}nm$.
Comparing the options with the final result, we can conclude that option B is correct.
Note: Generally, the value of constants are provided in most of the examinations you will come across in future, but it is still advisable to remember some constants, like the ones used above along with the units. Be careful with powers of 10 while multiplication and division.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

The force of interaction of two dipoles if the two class 12 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

The force between two short electric dipoles placed class 12 physics JEE_Main

A quarter cylinder of radius R and refractive index class 12 physics JEE_Main

The deBroglie wavelength of a bus moving speed v is class 12 physics JEE_Main

A proton accelerated by a potential difference of 500 class 12 physics JEE_Main

A 50HzAC current of crest value of 1A flows through class 12 physics JEE_Main
