Answer
Verified
78.3k+ views
Hint: Equate the energy given to remove the proton from its nucleus with the energy of the photon. Energy of a photon is inversely proportional to its wavelength.
Complete answer:
Energy required to remove proton from its nucleus $ = 1MeV = {10^6}eV$
If $\lambda $ is the wavelength of the photon needed to remove the proton, then its energy (in Joules) is given by following relation,
$ \Rightarrow E = \dfrac{{hc}}{\lambda }$, where $h = 6.63 \times {10^{ - 34}}Js$ is Planck’s constant and $c = 3 \times {10^8}m/s$ is the speed of electromagnetic radiation in vacuum.
But, $1eV = 1.66 \times {10^{ - 19}}J$.
To remove the nucleus from its proton, the photon should carry energy equal to one required as mentioned before. Therefore, substituting the values of the constants, we get,
$
\Rightarrow E = \dfrac{{hc}}{\lambda } = {10^6} \times (1.66 \times {10^{ - 19}}) \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.66 \times {{10}^{ - 13}}}} = \dfrac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.66 \times {{10}^{ - 13}}}} \\
\Rightarrow \lambda = 1.2 \times {10^{ - 12}}m \\
$
Now, if we check the options then we find that the units are in $nm = {10^{ - 9}}m$.
So, $\lambda = 1.2 \times {10^{ - 9}} \times {10^{ - 3}}m = 1.2 \times {10^{ - 3}}nm$.
Comparing the options with the final result, we can conclude that option B is correct.
Note: Generally, the value of constants are provided in most of the examinations you will come across in future, but it is still advisable to remember some constants, like the ones used above along with the units. Be careful with powers of 10 while multiplication and division.
Complete answer:
Energy required to remove proton from its nucleus $ = 1MeV = {10^6}eV$
If $\lambda $ is the wavelength of the photon needed to remove the proton, then its energy (in Joules) is given by following relation,
$ \Rightarrow E = \dfrac{{hc}}{\lambda }$, where $h = 6.63 \times {10^{ - 34}}Js$ is Planck’s constant and $c = 3 \times {10^8}m/s$ is the speed of electromagnetic radiation in vacuum.
But, $1eV = 1.66 \times {10^{ - 19}}J$.
To remove the nucleus from its proton, the photon should carry energy equal to one required as mentioned before. Therefore, substituting the values of the constants, we get,
$
\Rightarrow E = \dfrac{{hc}}{\lambda } = {10^6} \times (1.66 \times {10^{ - 19}}) \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.66 \times {{10}^{ - 13}}}} = \dfrac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.66 \times {{10}^{ - 13}}}} \\
\Rightarrow \lambda = 1.2 \times {10^{ - 12}}m \\
$
Now, if we check the options then we find that the units are in $nm = {10^{ - 9}}m$.
So, $\lambda = 1.2 \times {10^{ - 9}} \times {10^{ - 3}}m = 1.2 \times {10^{ - 3}}nm$.
Comparing the options with the final result, we can conclude that option B is correct.
Note: Generally, the value of constants are provided in most of the examinations you will come across in future, but it is still advisable to remember some constants, like the ones used above along with the units. Be careful with powers of 10 while multiplication and division.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Chloroform reacts with oxygen in the presence of light class 12 chemistry JEE_Main
The voltage of an AC supply varies with time t as V class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main