
The volume of a gas at ${20^0}C$ is $200ml$. If the temperature is reduced to $ - {20^\circ}C$ at constant pressure, its volume will be
(A) $172.6ml$
(B) $17.26ml$
(C) $192.7ml$
(D) $19.27ml$
Answer
216.6k+ views
Hint: First apply the ideal gas law, and then use the condition of constant pressure in that equation. After that put all the values provided in the question in that equation and get the required answer. At constant pressure, we know that volume divided by the temperature of the gas is also constant.
Formula used:
$PV = nRT$
$\dfrac{{{V_1}}}{{{T_1}}} = \dfrac{{{V_2}}}{{{T_2}}}$
Complete answer:
According to the ideal gas law, the product of the pressure and volume of one gram of an ideal gas is equal to the product of the gas's absolute temperature and the universal gas constant.
By Ideal Gas Law, we know;
$PV = nRT$
Where P is pressure
V is volume
R is the universal gas constant
T is temperature
At constant pressure,
$\dfrac{{nR}}{P} = \dfrac{V}{T} = constant$
Therefore, $\dfrac{{{V_1}}}{{{T_1}}} = \dfrac{{{V_2}}}{{{T_2}}}$ (equation 1)
From the question, we know;
${V_1} = 200ml$
${V_2} = ?$
${T_1} = {20^0}C = 293K$
${T_2} = - {20^0}C = 253K$
Substituting all the values in equation 1, we get;
$\dfrac{{200ml}}{{293K}} = \dfrac{{{V_2}}}{{253K}}$
By solving, we get;
${V_2} = 172.6ml$ (which is the final volume)
The correct option is (A).
Note: This question can be solved directly using Charle’s law which states that When the pressure on a dry gas sample is kept constant, the Kelvin temperature and volume are in direct proportion, i.e., $\dfrac{{{V_2}}}{{{V_1}}} = \dfrac{{{T_2}}}{{{T_1}}}$. Make sure to convert the temperature unit into kelvin, otherwise, it can cause an error in the solution.
Formula used:
$PV = nRT$
$\dfrac{{{V_1}}}{{{T_1}}} = \dfrac{{{V_2}}}{{{T_2}}}$
Complete answer:
According to the ideal gas law, the product of the pressure and volume of one gram of an ideal gas is equal to the product of the gas's absolute temperature and the universal gas constant.
By Ideal Gas Law, we know;
$PV = nRT$
Where P is pressure
V is volume
R is the universal gas constant
T is temperature
At constant pressure,
$\dfrac{{nR}}{P} = \dfrac{V}{T} = constant$
Therefore, $\dfrac{{{V_1}}}{{{T_1}}} = \dfrac{{{V_2}}}{{{T_2}}}$ (equation 1)
From the question, we know;
${V_1} = 200ml$
${V_2} = ?$
${T_1} = {20^0}C = 293K$
${T_2} = - {20^0}C = 253K$
Substituting all the values in equation 1, we get;
$\dfrac{{200ml}}{{293K}} = \dfrac{{{V_2}}}{{253K}}$
By solving, we get;
${V_2} = 172.6ml$ (which is the final volume)
The correct option is (A).
Note: This question can be solved directly using Charle’s law which states that When the pressure on a dry gas sample is kept constant, the Kelvin temperature and volume are in direct proportion, i.e., $\dfrac{{{V_2}}}{{{V_1}}} = \dfrac{{{T_2}}}{{{T_1}}}$. Make sure to convert the temperature unit into kelvin, otherwise, it can cause an error in the solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

