
The vertical extension in a light spring by a weight of 1 kg suspended from the wire is 9.8 cm. The period of oscillation
A. \[20\pi \]sec
B. \[2\pi \]sec
C. \[\dfrac{{2\pi }}{{10}}\]sec
D. \[200\pi \]sec
Answer
216.6k+ views
Hint: When the mass is suspended from the spring, then because of force of gravity acting on the mass, the spring elongates to balance the weight of the suspended mass. The elongation is proportional to the weight of the suspended mass.
Formula used:
\[F = kx\], here F is the spring force, k is the spring constant and x is change in length of the spring.
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period of oscillation of the vertical spring-block system.
Complete step by step solution:
Let the spring constant of the given spring is k
It is given that the extension in the spring on suspending the weight of 1 kg is 9.8 cm
\[x = 9.8cm\]
\[x = 9.8 \times {10^{ - 2}}m\]
The force of gravity acting on the suspended body is equal to the weight of the body,
So the spring force will be equal to the weight of the suspended body.
\[F = mg\]
\[kx = mg\]
\[k = \dfrac{{mg}}{x}\]
Putting the values, we get
\[k = \dfrac{{1 \times 9.8}}{{9.8 \times {{10}^{ - 2}}}}N/m\]
\[k = 100N/m\]
So, the spring constant of the given spring is \[100N/m\]
Using the formula of period of oscillation,
\[T = 2\pi \sqrt {\dfrac{1}{{100}}} \sec \]
\[T = \dfrac{{2\pi }}{{10}}\sec \]
So, the period of oscillation of the given vertical spring-block system is \[\dfrac{{2\pi }}{{10}}\sec \]
Therefore, the correct option is (C).
Note: We should be careful while plugin the given data in the required formula. We need to change the unit to the standard unit before plugin into the formula. As the expression for the spring constant in this case contains the weight, so we should be careful about the value of the acceleration due to gravity.
Formula used:
\[F = kx\], here F is the spring force, k is the spring constant and x is change in length of the spring.
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period of oscillation of the vertical spring-block system.
Complete step by step solution:
Let the spring constant of the given spring is k
It is given that the extension in the spring on suspending the weight of 1 kg is 9.8 cm
\[x = 9.8cm\]
\[x = 9.8 \times {10^{ - 2}}m\]
The force of gravity acting on the suspended body is equal to the weight of the body,
So the spring force will be equal to the weight of the suspended body.
\[F = mg\]
\[kx = mg\]
\[k = \dfrac{{mg}}{x}\]
Putting the values, we get
\[k = \dfrac{{1 \times 9.8}}{{9.8 \times {{10}^{ - 2}}}}N/m\]
\[k = 100N/m\]
So, the spring constant of the given spring is \[100N/m\]
Using the formula of period of oscillation,
\[T = 2\pi \sqrt {\dfrac{1}{{100}}} \sec \]
\[T = \dfrac{{2\pi }}{{10}}\sec \]
So, the period of oscillation of the given vertical spring-block system is \[\dfrac{{2\pi }}{{10}}\sec \]
Therefore, the correct option is (C).
Note: We should be careful while plugin the given data in the required formula. We need to change the unit to the standard unit before plugin into the formula. As the expression for the spring constant in this case contains the weight, so we should be careful about the value of the acceleration due to gravity.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

