
The velocity vector $v$ and displacement vector $x$of a particle executing SHM are related as \[V\dfrac{{dv}}{{dx}} = - {w^2}x\] with the initial condition \[v = {v_0}\]at \[x = 0\] the velocity \[{v_s}\] when displacement is$x$, is
(A) \[v = \sqrt {v{}_0^2 + {w^2}{x^2}} \]
(B) \[v = \sqrt {v{}_0^2 - {w^2}{x^2}} \]
(c) \[v = \sqrt {v{}_0^3 + {w^3} + {x^3}} \]
(D) \[v = {v_0} - {({w^3}{x^3}{e^x}^{^3})^{\dfrac{1}{3}}}\]

Answer
216k+ views
Hint In mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to the object's displacement magnitude and acts towards the object's equilibrium position. It is vibratory motion in a system in which the restoring force is proportional to the displacement from equilibrium
Step by step solution
As it is Simple harmonic motion so the equation of motion will be
\[F = - kx\]
Or the equation can be written as
\[\dfrac{{vdv}}{{dx}} = - {\omega ^2}x\]
Now integrating the expression with boundary condition,
\[\int\limits_{{v_0}}^v {vdv} = - {\omega ^2}\int\limits_0^x {xdx} \]
After integrating the above equation we get
$\left[ {\dfrac{{{v^2}}}{2}} \right]_{{v_0}}^v = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^x$
Now we have to apply the limit in the above equation so we get
$\left[ {\dfrac{{{v^2}}}{2} - \dfrac{{v_0^2}}{2}} \right] = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]$
Now we have to do further calculation then we get
$\dfrac{1}{2}\left[ {{v^2} - v_0^2} \right] = \dfrac{{ - {\omega ^2}{x^2}}}{2}$
Now after simplifying the above equation we get
$v = \sqrt {v{}_0^2 - {\omega ^2}{x^2}} $
Hence the correct answer is option is (B)
Note
A speed vector speaks to the pace of progress of the situation of an object.The greatness of a speed vector gives the speed of an article while the vector course gives its direction.Velocity vectors can be added or deducted by the standards of vector addition.In math and mechanics, a relocation is a vector whose length is the most limited good ways from the underlying to the last situation of a point P going through movement. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Step by step solution
As it is Simple harmonic motion so the equation of motion will be
\[F = - kx\]
Or the equation can be written as
\[\dfrac{{vdv}}{{dx}} = - {\omega ^2}x\]
Now integrating the expression with boundary condition,
\[\int\limits_{{v_0}}^v {vdv} = - {\omega ^2}\int\limits_0^x {xdx} \]
After integrating the above equation we get
$\left[ {\dfrac{{{v^2}}}{2}} \right]_{{v_0}}^v = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^x$
Now we have to apply the limit in the above equation so we get
$\left[ {\dfrac{{{v^2}}}{2} - \dfrac{{v_0^2}}{2}} \right] = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]$
Now we have to do further calculation then we get
$\dfrac{1}{2}\left[ {{v^2} - v_0^2} \right] = \dfrac{{ - {\omega ^2}{x^2}}}{2}$
Now after simplifying the above equation we get
$v = \sqrt {v{}_0^2 - {\omega ^2}{x^2}} $
Hence the correct answer is option is (B)
Note
A speed vector speaks to the pace of progress of the situation of an object.The greatness of a speed vector gives the speed of an article while the vector course gives its direction.Velocity vectors can be added or deducted by the standards of vector addition.In math and mechanics, a relocation is a vector whose length is the most limited good ways from the underlying to the last situation of a point P going through movement. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

