
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
(A) Cannot be predicted
(B) Are equal to each other
(C) Are equal to each other in magnitude
(D) Are not equal to each other in magnitude
Answer
217.2k+ views
Hint: When two vectors are perpendicular to each other, their scalar product (dot product) vanishes. Use this to find a relation between the two forces.
Complete step by step solution
Let the two forces be $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $.
The vector sum of the two forces will be${\overrightarrow F _{sum}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} $.
The vector difference of the two forces will be${\overrightarrow F _{difference}} = \overrightarrow {{F_1}} - \overrightarrow {{F_2}} $.
In the question, we are given that the vector sum of the two forces and their vector difference are perpendicular to each other. This implies that their scalar product or their dot product, must vanish.
$ \Rightarrow \left( {{{\overrightarrow F }_{sum}}} \right) \cdot \left( {{{\overrightarrow F }_{difference}}} \right) = 0$
Substituting the values of ${\overrightarrow F _{sum}}$and ${\overrightarrow F _{difference}}$in the above equation yields,
$ \Rightarrow \left( {{{\overrightarrow F }_1} + {{\overrightarrow F }_2}} \right) \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0$
Now, we will use distributive law of dot product and open the brackets in the above equation,
\[
\Rightarrow {\overrightarrow F _1} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) + {\overrightarrow F _2} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _2} \cdot {\overrightarrow F _1} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\]
We know that the order of multiplication does not matter in a dot product, i.e.\[{\overrightarrow F _2}.{\overrightarrow F _1} = {\overrightarrow F _1}.{\overrightarrow F _2}\], substituting this in above equation,
\[
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + ( - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2}) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + (0) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} = {\overrightarrow F _2} \cdot {\overrightarrow F _2} \\
\]
Now we can substitute \[{\overrightarrow F _1} \cdot {\overrightarrow F _1}\]as \[{\left| {{{\overrightarrow F }_1}} \right|^2}\]and \[{\overrightarrow F _2} \cdot {\overrightarrow F _2}\]as \[{\left| {{{\overrightarrow F }_2}} \right|^2}\]in the above equation,
\[
\Rightarrow {\left| {{{\overrightarrow F }_1}} \right|^2} = {\left| {{{\overrightarrow F }_2}} \right|^2} \\
\Rightarrow \left| {{{\overrightarrow F }_1}} \right| = \left| {{{\overrightarrow F }_2}} \right| \\
\]
Therefore, the magnitude of the two forces, \[{\overrightarrow F _1}\]and \[{\overrightarrow F _2}\]are coming out to be equal.
Option (C) is correct.
Note: We have used that the scalar product of two mutually perpendicular vectors is zero. This can be understood from the definition of scalar product. The scalar product (also called as dot product) of two vectors $\overrightarrow A $ and $\overrightarrow B $ is given by: $\left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $ where, $\theta $ is the angle between vectors $\overrightarrow A $ and $\overrightarrow B $. If the vectors $\overrightarrow A $ and $\overrightarrow B $ are mutually perpendicular, the angle $\theta$ between them will be $90^\circ $.
$
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos 90^\circ \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|(0) \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = 0 \\
$
Therefore, the dot product of two mutually perpendicular vectors is always zero.
Complete step by step solution
Let the two forces be $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $.
The vector sum of the two forces will be${\overrightarrow F _{sum}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} $.
The vector difference of the two forces will be${\overrightarrow F _{difference}} = \overrightarrow {{F_1}} - \overrightarrow {{F_2}} $.
In the question, we are given that the vector sum of the two forces and their vector difference are perpendicular to each other. This implies that their scalar product or their dot product, must vanish.
$ \Rightarrow \left( {{{\overrightarrow F }_{sum}}} \right) \cdot \left( {{{\overrightarrow F }_{difference}}} \right) = 0$
Substituting the values of ${\overrightarrow F _{sum}}$and ${\overrightarrow F _{difference}}$in the above equation yields,
$ \Rightarrow \left( {{{\overrightarrow F }_1} + {{\overrightarrow F }_2}} \right) \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0$
Now, we will use distributive law of dot product and open the brackets in the above equation,
\[
\Rightarrow {\overrightarrow F _1} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) + {\overrightarrow F _2} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _2} \cdot {\overrightarrow F _1} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\]
We know that the order of multiplication does not matter in a dot product, i.e.\[{\overrightarrow F _2}.{\overrightarrow F _1} = {\overrightarrow F _1}.{\overrightarrow F _2}\], substituting this in above equation,
\[
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + ( - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2}) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + (0) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} = {\overrightarrow F _2} \cdot {\overrightarrow F _2} \\
\]
Now we can substitute \[{\overrightarrow F _1} \cdot {\overrightarrow F _1}\]as \[{\left| {{{\overrightarrow F }_1}} \right|^2}\]and \[{\overrightarrow F _2} \cdot {\overrightarrow F _2}\]as \[{\left| {{{\overrightarrow F }_2}} \right|^2}\]in the above equation,
\[
\Rightarrow {\left| {{{\overrightarrow F }_1}} \right|^2} = {\left| {{{\overrightarrow F }_2}} \right|^2} \\
\Rightarrow \left| {{{\overrightarrow F }_1}} \right| = \left| {{{\overrightarrow F }_2}} \right| \\
\]
Therefore, the magnitude of the two forces, \[{\overrightarrow F _1}\]and \[{\overrightarrow F _2}\]are coming out to be equal.
Option (C) is correct.
Note: We have used that the scalar product of two mutually perpendicular vectors is zero. This can be understood from the definition of scalar product. The scalar product (also called as dot product) of two vectors $\overrightarrow A $ and $\overrightarrow B $ is given by: $\left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $ where, $\theta $ is the angle between vectors $\overrightarrow A $ and $\overrightarrow B $. If the vectors $\overrightarrow A $ and $\overrightarrow B $ are mutually perpendicular, the angle $\theta$ between them will be $90^\circ $.
$
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos 90^\circ \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|(0) \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = 0 \\
$
Therefore, the dot product of two mutually perpendicular vectors is always zero.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

