
The van't Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$. The percentage of dissociation of $BaC{l_2}$ at this concentration is:
A. $49$
B. $69$
C. $89$
D. $100$
Answer
164.1k+ views
Hint: Some chemical compounds dissociate or associate in solution when utilised as solutes. Their molar mass and other colligative characteristics change as a result. The Van't Hoff Factor can account for this. It was given the name Jacobus Henricus Van't Hoff, Jr. after the Dutch physical chemist.
Formula Used: van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Complete step-by-step answer:In the question, we have given the van’t Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$,
We can consider the dissociation of $BaC{l_2}$, we have
$BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - }$
From the given information, the concentration is $0.01M$ at the time $t = 0$
Let assume the number of particles be $x$, then at the time $t$:
$(0.01 - x) \rightleftharpoons xM + 2xM$
Now, use the formula of van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Substitute the values in the above formula, then we have:
$i = \dfrac{{(0.01 - x) + x + 2x}}{{0.01}} \\$
$\Rightarrow i = \dfrac{{0.01 + 2x}}{{0.01}} \\$
As we know that the van't Hoff factor of $BaC{l_2}$ at $0.01M$concentration is $1.98$, i.e., $i = 1.98$
$1.98 = \dfrac{{0.01 + 2x}}{{0.01}} \\$
$\Rightarrow 1.98 \times 0.01 = 0.01 + 2x \\$
$\Rightarrow x = \dfrac{{0.0198 - 0.01}}{2} \\$
$\Rightarrow x = 0.0049 \\$
When introduced in water, strong acids and bases totally dissociate. In other words, the full base $[BOH]$ or acid $[HA]$ splits into ions.
On the other hand, the weak acids or the bases do not entirely dissociate in an aqueous solution. The degree to which they separate is indicated by the dissociation constants ${K_a}$ and ${K_b}$:
$\begin{array}{*{20}{l}}
{{K_a}\; = {\text{ }}\left( {\left[ {{H^ + }} \right]\left[ {{A^-}} \right]} \right){\text{ }} \div {\text{ }}\left[ {HA} \right]} \\
{{K_b}\; = {\text{ }}(\left[ {{B^ + }} \right]\left[ {O{H^-}} \right]){\text{ }} \div {\text{ }}\left[ {BOH} \right]}
\end{array}$
Therefore, the dissociation percentage is:
$\alpha = \dfrac{x}{{0.01}} \times 100 \\$
$\Rightarrow \dfrac{{0.0049}}{{0.01}} \times 100 \\$
$\Rightarrow 49\% \\$
Option ‘A’ is correct
Note:When the amount of solute increases (the association value of $i$ is more than one), its colligative property also grows. The amount of solute reduces, the colligative property reduces, when the association value of $i$ is less than one.
Formula Used: van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Complete step-by-step answer:In the question, we have given the van’t Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$,
We can consider the dissociation of $BaC{l_2}$, we have
$BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - }$
From the given information, the concentration is $0.01M$ at the time $t = 0$
Let assume the number of particles be $x$, then at the time $t$:
$(0.01 - x) \rightleftharpoons xM + 2xM$
Now, use the formula of van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Substitute the values in the above formula, then we have:
$i = \dfrac{{(0.01 - x) + x + 2x}}{{0.01}} \\$
$\Rightarrow i = \dfrac{{0.01 + 2x}}{{0.01}} \\$
As we know that the van't Hoff factor of $BaC{l_2}$ at $0.01M$concentration is $1.98$, i.e., $i = 1.98$
$1.98 = \dfrac{{0.01 + 2x}}{{0.01}} \\$
$\Rightarrow 1.98 \times 0.01 = 0.01 + 2x \\$
$\Rightarrow x = \dfrac{{0.0198 - 0.01}}{2} \\$
$\Rightarrow x = 0.0049 \\$
When introduced in water, strong acids and bases totally dissociate. In other words, the full base $[BOH]$ or acid $[HA]$ splits into ions.
On the other hand, the weak acids or the bases do not entirely dissociate in an aqueous solution. The degree to which they separate is indicated by the dissociation constants ${K_a}$ and ${K_b}$:
$\begin{array}{*{20}{l}}
{{K_a}\; = {\text{ }}\left( {\left[ {{H^ + }} \right]\left[ {{A^-}} \right]} \right){\text{ }} \div {\text{ }}\left[ {HA} \right]} \\
{{K_b}\; = {\text{ }}(\left[ {{B^ + }} \right]\left[ {O{H^-}} \right]){\text{ }} \div {\text{ }}\left[ {BOH} \right]}
\end{array}$
Therefore, the dissociation percentage is:
$\alpha = \dfrac{x}{{0.01}} \times 100 \\$
$\Rightarrow \dfrac{{0.0049}}{{0.01}} \times 100 \\$
$\Rightarrow 49\% \\$
Option ‘A’ is correct
Note:When the amount of solute increases (the association value of $i$ is more than one), its colligative property also grows. The amount of solute reduces, the colligative property reduces, when the association value of $i$ is less than one.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
