
The van't Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$. The percentage of dissociation of $BaC{l_2}$ at this concentration is:
A. $49$
B. $69$
C. $89$
D. $100$
Answer
221.1k+ views
Hint: Some chemical compounds dissociate or associate in solution when utilised as solutes. Their molar mass and other colligative characteristics change as a result. The Van't Hoff Factor can account for this. It was given the name Jacobus Henricus Van't Hoff, Jr. after the Dutch physical chemist.
Formula Used: van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Complete step-by-step answer:In the question, we have given the van’t Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$,
We can consider the dissociation of $BaC{l_2}$, we have
$BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - }$
From the given information, the concentration is $0.01M$ at the time $t = 0$
Let assume the number of particles be $x$, then at the time $t$:
$(0.01 - x) \rightleftharpoons xM + 2xM$
Now, use the formula of van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Substitute the values in the above formula, then we have:
$i = \dfrac{{(0.01 - x) + x + 2x}}{{0.01}} \\$
$\Rightarrow i = \dfrac{{0.01 + 2x}}{{0.01}} \\$
As we know that the van't Hoff factor of $BaC{l_2}$ at $0.01M$concentration is $1.98$, i.e., $i = 1.98$
$1.98 = \dfrac{{0.01 + 2x}}{{0.01}} \\$
$\Rightarrow 1.98 \times 0.01 = 0.01 + 2x \\$
$\Rightarrow x = \dfrac{{0.0198 - 0.01}}{2} \\$
$\Rightarrow x = 0.0049 \\$
When introduced in water, strong acids and bases totally dissociate. In other words, the full base $[BOH]$ or acid $[HA]$ splits into ions.
On the other hand, the weak acids or the bases do not entirely dissociate in an aqueous solution. The degree to which they separate is indicated by the dissociation constants ${K_a}$ and ${K_b}$:
$\begin{array}{*{20}{l}}
{{K_a}\; = {\text{ }}\left( {\left[ {{H^ + }} \right]\left[ {{A^-}} \right]} \right){\text{ }} \div {\text{ }}\left[ {HA} \right]} \\
{{K_b}\; = {\text{ }}(\left[ {{B^ + }} \right]\left[ {O{H^-}} \right]){\text{ }} \div {\text{ }}\left[ {BOH} \right]}
\end{array}$
Therefore, the dissociation percentage is:
$\alpha = \dfrac{x}{{0.01}} \times 100 \\$
$\Rightarrow \dfrac{{0.0049}}{{0.01}} \times 100 \\$
$\Rightarrow 49\% \\$
Option ‘A’ is correct
Note:When the amount of solute increases (the association value of $i$ is more than one), its colligative property also grows. The amount of solute reduces, the colligative property reduces, when the association value of $i$ is less than one.
Formula Used: van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Complete step-by-step answer:In the question, we have given the van’t Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$,
We can consider the dissociation of $BaC{l_2}$, we have
$BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - }$
From the given information, the concentration is $0.01M$ at the time $t = 0$
Let assume the number of particles be $x$, then at the time $t$:
$(0.01 - x) \rightleftharpoons xM + 2xM$
Now, use the formula of van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Substitute the values in the above formula, then we have:
$i = \dfrac{{(0.01 - x) + x + 2x}}{{0.01}} \\$
$\Rightarrow i = \dfrac{{0.01 + 2x}}{{0.01}} \\$
As we know that the van't Hoff factor of $BaC{l_2}$ at $0.01M$concentration is $1.98$, i.e., $i = 1.98$
$1.98 = \dfrac{{0.01 + 2x}}{{0.01}} \\$
$\Rightarrow 1.98 \times 0.01 = 0.01 + 2x \\$
$\Rightarrow x = \dfrac{{0.0198 - 0.01}}{2} \\$
$\Rightarrow x = 0.0049 \\$
When introduced in water, strong acids and bases totally dissociate. In other words, the full base $[BOH]$ or acid $[HA]$ splits into ions.
On the other hand, the weak acids or the bases do not entirely dissociate in an aqueous solution. The degree to which they separate is indicated by the dissociation constants ${K_a}$ and ${K_b}$:
$\begin{array}{*{20}{l}}
{{K_a}\; = {\text{ }}\left( {\left[ {{H^ + }} \right]\left[ {{A^-}} \right]} \right){\text{ }} \div {\text{ }}\left[ {HA} \right]} \\
{{K_b}\; = {\text{ }}(\left[ {{B^ + }} \right]\left[ {O{H^-}} \right]){\text{ }} \div {\text{ }}\left[ {BOH} \right]}
\end{array}$
Therefore, the dissociation percentage is:
$\alpha = \dfrac{x}{{0.01}} \times 100 \\$
$\Rightarrow \dfrac{{0.0049}}{{0.01}} \times 100 \\$
$\Rightarrow 49\% \\$
Option ‘A’ is correct
Note:When the amount of solute increases (the association value of $i$ is more than one), its colligative property also grows. The amount of solute reduces, the colligative property reduces, when the association value of $i$ is less than one.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Common Ion Effect: Concept, Applications, and Problem-Solving

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

