
The van't Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$. The percentage of dissociation of $BaC{l_2}$ at this concentration is:
A. $49$
B. $69$
C. $89$
D. $100$
Answer
233.1k+ views
Hint: Some chemical compounds dissociate or associate in solution when utilised as solutes. Their molar mass and other colligative characteristics change as a result. The Van't Hoff Factor can account for this. It was given the name Jacobus Henricus Van't Hoff, Jr. after the Dutch physical chemist.
Formula Used: van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Complete step-by-step answer:In the question, we have given the van’t Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$,
We can consider the dissociation of $BaC{l_2}$, we have
$BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - }$
From the given information, the concentration is $0.01M$ at the time $t = 0$
Let assume the number of particles be $x$, then at the time $t$:
$(0.01 - x) \rightleftharpoons xM + 2xM$
Now, use the formula of van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Substitute the values in the above formula, then we have:
$i = \dfrac{{(0.01 - x) + x + 2x}}{{0.01}} \\$
$\Rightarrow i = \dfrac{{0.01 + 2x}}{{0.01}} \\$
As we know that the van't Hoff factor of $BaC{l_2}$ at $0.01M$concentration is $1.98$, i.e., $i = 1.98$
$1.98 = \dfrac{{0.01 + 2x}}{{0.01}} \\$
$\Rightarrow 1.98 \times 0.01 = 0.01 + 2x \\$
$\Rightarrow x = \dfrac{{0.0198 - 0.01}}{2} \\$
$\Rightarrow x = 0.0049 \\$
When introduced in water, strong acids and bases totally dissociate. In other words, the full base $[BOH]$ or acid $[HA]$ splits into ions.
On the other hand, the weak acids or the bases do not entirely dissociate in an aqueous solution. The degree to which they separate is indicated by the dissociation constants ${K_a}$ and ${K_b}$:
$\begin{array}{*{20}{l}}
{{K_a}\; = {\text{ }}\left( {\left[ {{H^ + }} \right]\left[ {{A^-}} \right]} \right){\text{ }} \div {\text{ }}\left[ {HA} \right]} \\
{{K_b}\; = {\text{ }}(\left[ {{B^ + }} \right]\left[ {O{H^-}} \right]){\text{ }} \div {\text{ }}\left[ {BOH} \right]}
\end{array}$
Therefore, the dissociation percentage is:
$\alpha = \dfrac{x}{{0.01}} \times 100 \\$
$\Rightarrow \dfrac{{0.0049}}{{0.01}} \times 100 \\$
$\Rightarrow 49\% \\$
Option ‘A’ is correct
Note:When the amount of solute increases (the association value of $i$ is more than one), its colligative property also grows. The amount of solute reduces, the colligative property reduces, when the association value of $i$ is less than one.
Formula Used: van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Complete step-by-step answer:In the question, we have given the van’t Hoff factor of $BaC{l_2}$ at $0.01M$ concentration is $1.98$,
We can consider the dissociation of $BaC{l_2}$, we have
$BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - }$
From the given information, the concentration is $0.01M$ at the time $t = 0$
Let assume the number of particles be $x$, then at the time $t$:
$(0.01 - x) \rightleftharpoons xM + 2xM$
Now, use the formula of van’t Hoff factor which is represented as:
$i = \dfrac{{Number\,of\,particles\,after\,dissociation}}{{Number\,of\,particles\,before\,dissociation}}$
Substitute the values in the above formula, then we have:
$i = \dfrac{{(0.01 - x) + x + 2x}}{{0.01}} \\$
$\Rightarrow i = \dfrac{{0.01 + 2x}}{{0.01}} \\$
As we know that the van't Hoff factor of $BaC{l_2}$ at $0.01M$concentration is $1.98$, i.e., $i = 1.98$
$1.98 = \dfrac{{0.01 + 2x}}{{0.01}} \\$
$\Rightarrow 1.98 \times 0.01 = 0.01 + 2x \\$
$\Rightarrow x = \dfrac{{0.0198 - 0.01}}{2} \\$
$\Rightarrow x = 0.0049 \\$
When introduced in water, strong acids and bases totally dissociate. In other words, the full base $[BOH]$ or acid $[HA]$ splits into ions.
On the other hand, the weak acids or the bases do not entirely dissociate in an aqueous solution. The degree to which they separate is indicated by the dissociation constants ${K_a}$ and ${K_b}$:
$\begin{array}{*{20}{l}}
{{K_a}\; = {\text{ }}\left( {\left[ {{H^ + }} \right]\left[ {{A^-}} \right]} \right){\text{ }} \div {\text{ }}\left[ {HA} \right]} \\
{{K_b}\; = {\text{ }}(\left[ {{B^ + }} \right]\left[ {O{H^-}} \right]){\text{ }} \div {\text{ }}\left[ {BOH} \right]}
\end{array}$
Therefore, the dissociation percentage is:
$\alpha = \dfrac{x}{{0.01}} \times 100 \\$
$\Rightarrow \dfrac{{0.0049}}{{0.01}} \times 100 \\$
$\Rightarrow 49\% \\$
Option ‘A’ is correct
Note:When the amount of solute increases (the association value of $i$ is more than one), its colligative property also grows. The amount of solute reduces, the colligative property reduces, when the association value of $i$ is less than one.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

