
The value of $\sin {20^0}\sin {40^0}\sin {60^0}\sin {80^0}$ is
$\left( A \right)$. $\dfrac{{ - 3}}{{\sqrt {16} }}$
\[\left( B \right)\]. $\dfrac{5}{{\sqrt {16} }}$
$\left( C \right)$. $\dfrac{3}{{\sqrt {16} }}$
$\left( D \right)$. $\dfrac{{ - 5}}{{\sqrt {16} }}$
Answer
219.6k+ views
Hint: In the above problem the trigonometric product to sum identities should be used. The identity to be used is to be determined by inspection so that the result gives angle with general known trigonometric ratio.
Given in the problem, we need to find value of the expression
$\sin {20^0}\sin {40^0}\sin {60^0}\sin {80^0}$ …………………………….. (1)
We need to group terms so that using a product to sum trigonometric formula gives angles whose trigonometric value is known.
We know that value of
$\cos (x - y) - \cos (x + y) = 2\sin x\sin y$ …………………………………...(2)
Put $x = 80$and $y = 40$in the equation (2) ,we get
\[
2\sin {80^0}\sin {40^0} = \cos ({80^0} - {40^0}) - \cos ({80^0} + {40^0}) \\
\Rightarrow 2\sin {80^0}\sin {40^0} = \cos ({40^0}) - \cos ({120^0}) \\
\]
We know that $\cos \left( {{{180}^0} - \theta } \right) = - \cos \theta $
Put $\theta = {60^0}$ in above $ \Rightarrow \cos {120^0} = \cos \left( {{{180}^0} - {{60}^0}} \right) = - \cos {60^0} = - \dfrac{1}{2}$
\[ \Rightarrow 2\sin {80^0}\sin {40^0} = \cos ({40^0}) - \cos ({120^0}) = \cos ({40^0}) + \dfrac{1}{2}\] …………………(3)
Multiplying expression (1) with $\dfrac{2}{2}$ and rearranging, we get
$\dfrac{{2\sin {{80}^0}\sin {{40}^0}\sin {{60}^0}\sin {{20}^0}}}{2}$
Using equation (3) in above, we get
$\left( {\cos {{40}^0} + \dfrac{1}{2}} \right)\dfrac{{\sin {{60}^0}\sin {{20}^0}}}{2}$
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ in above,
$ \Rightarrow \left( {\cos {{40}^0} + \dfrac{1}{2}} \right)\dfrac{{\sqrt 3 }}{4}\sin {20^0}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\sin {{20}^0}\cos {{40}^0} + \sin {{20}^0}} \right)$ …………………………………………………...(4)
We know that value of
$\sin (x + y) + \sin (x - y) = 2\sin x\cos y$ ……………………………………………...(5)
Put $x = 20$and $y = 40$in the equation (5), we get
\[
2\sin {20^0}\cos {40^0} = \sin ({20^0} + {40^0}) + \sin ({20^0} - {40^0}) \\
\Rightarrow 2\sin {20^0}\sin {40^0} = \sin ({60^0}) + \sin ( - {20^0}) \\
\]
We know that $\sin \left( { - \theta } \right) = - \sin \theta $
Put $\theta = {20^0}$ in above gives $\sin \left( { - {{20}^0}} \right) = - \sin {20^0}$
\[ \Rightarrow 2\sin {20^0}\sin {40^0} = \sin ({60^0}) - \sin ({20^0}) = \dfrac{{\sqrt 3 }}{2} - \sin ({20^0})\] ……………………………….(6)
Using equation (6) in (4), we get
\[
\dfrac{{\sqrt 3 }}{8}\left( {2\sin {{20}^0}\cos {{40}^0} + \sin {{20}^0}} \right) = \dfrac{{\sqrt 3 }}{8}\left( {\dfrac{{\sqrt 3 }}{2} - \sin {{20}^0} + \sin {{20}^0}} \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{3}{{16}} \\
\]
Therefore, the value of expression (1) is $\dfrac{3}{{16}}$.
Hence option $(C)$ $\dfrac{3}{{16}}$ is the correct answer.
Note: Always remember trigonometric sum to product and product to sum formula. Modifications may need to be performed in the expressions like above in order to use these identities. These modifications should never alter the value of the original expression. Try to convert the expression in problems of above type into known trigonometric ratio values.
Given in the problem, we need to find value of the expression
$\sin {20^0}\sin {40^0}\sin {60^0}\sin {80^0}$ …………………………….. (1)
We need to group terms so that using a product to sum trigonometric formula gives angles whose trigonometric value is known.
We know that value of
$\cos (x - y) - \cos (x + y) = 2\sin x\sin y$ …………………………………...(2)
Put $x = 80$and $y = 40$in the equation (2) ,we get
\[
2\sin {80^0}\sin {40^0} = \cos ({80^0} - {40^0}) - \cos ({80^0} + {40^0}) \\
\Rightarrow 2\sin {80^0}\sin {40^0} = \cos ({40^0}) - \cos ({120^0}) \\
\]
We know that $\cos \left( {{{180}^0} - \theta } \right) = - \cos \theta $
Put $\theta = {60^0}$ in above $ \Rightarrow \cos {120^0} = \cos \left( {{{180}^0} - {{60}^0}} \right) = - \cos {60^0} = - \dfrac{1}{2}$
\[ \Rightarrow 2\sin {80^0}\sin {40^0} = \cos ({40^0}) - \cos ({120^0}) = \cos ({40^0}) + \dfrac{1}{2}\] …………………(3)
Multiplying expression (1) with $\dfrac{2}{2}$ and rearranging, we get
$\dfrac{{2\sin {{80}^0}\sin {{40}^0}\sin {{60}^0}\sin {{20}^0}}}{2}$
Using equation (3) in above, we get
$\left( {\cos {{40}^0} + \dfrac{1}{2}} \right)\dfrac{{\sin {{60}^0}\sin {{20}^0}}}{2}$
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ in above,
$ \Rightarrow \left( {\cos {{40}^0} + \dfrac{1}{2}} \right)\dfrac{{\sqrt 3 }}{4}\sin {20^0}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\sin {{20}^0}\cos {{40}^0} + \sin {{20}^0}} \right)$ …………………………………………………...(4)
We know that value of
$\sin (x + y) + \sin (x - y) = 2\sin x\cos y$ ……………………………………………...(5)
Put $x = 20$and $y = 40$in the equation (5), we get
\[
2\sin {20^0}\cos {40^0} = \sin ({20^0} + {40^0}) + \sin ({20^0} - {40^0}) \\
\Rightarrow 2\sin {20^0}\sin {40^0} = \sin ({60^0}) + \sin ( - {20^0}) \\
\]
We know that $\sin \left( { - \theta } \right) = - \sin \theta $
Put $\theta = {20^0}$ in above gives $\sin \left( { - {{20}^0}} \right) = - \sin {20^0}$
\[ \Rightarrow 2\sin {20^0}\sin {40^0} = \sin ({60^0}) - \sin ({20^0}) = \dfrac{{\sqrt 3 }}{2} - \sin ({20^0})\] ……………………………….(6)
Using equation (6) in (4), we get
\[
\dfrac{{\sqrt 3 }}{8}\left( {2\sin {{20}^0}\cos {{40}^0} + \sin {{20}^0}} \right) = \dfrac{{\sqrt 3 }}{8}\left( {\dfrac{{\sqrt 3 }}{2} - \sin {{20}^0} + \sin {{20}^0}} \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{3}{{16}} \\
\]
Therefore, the value of expression (1) is $\dfrac{3}{{16}}$.
Hence option $(C)$ $\dfrac{3}{{16}}$ is the correct answer.
Note: Always remember trigonometric sum to product and product to sum formula. Modifications may need to be performed in the expressions like above in order to use these identities. These modifications should never alter the value of the original expression. Try to convert the expression in problems of above type into known trigonometric ratio values.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Centrifugal Force in Physics

