
The value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is
Answer
164.4k+ views
Hint: Find the roots of quadratic equations to know in which limit the value of modulus will be positive and negative. Then, write the modulus in expanded form with their appropriate limits and integrate the function.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
