
The value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is
Answer
218.4k+ views
Hint: Find the roots of quadratic equations to know in which limit the value of modulus will be positive and negative. Then, write the modulus in expanded form with their appropriate limits and integrate the function.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

