
The value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is
Answer
233.1k+ views
Hint: Find the roots of quadratic equations to know in which limit the value of modulus will be positive and negative. Then, write the modulus in expanded form with their appropriate limits and integrate the function.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

