
The value of acceleration due to gravity at height h from Earth’s surface will become half it’s value on the surface if ( $R{\text{ }} = {\text{ Radius of Earth}}$ )
A) $h = R$
B) $h = 2R$
C) $h = (\sqrt 2 - 1)R$
D) $h = (\sqrt 2 + 1)R$
Answer
152.1k+ views
Hint: We have to find the height at which the gravity will be half of that on the surface of Earth. So we will use the formula of Force of interaction between two bodies having mass. Then, we will find the value of gravity at Earth’s surface then we will use the given height in the formula we will obtain.
Complete step by step solution:
We know that the force of attraction $F$ between two bodies having masses ${m_1}$ and ${m_2}$ separated by a distance $r$ is given by
$F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}$
Where $G$ is universal gravitational constant.
Let the mass of Earth be $M$ a point object of mass $m$ at surface of Earth of radius $R$ ,
Their force of attraction $F$ will be given by,
$F = \dfrac{{GMm}}{{{R^2}}}$
This force of attraction will be $F = mg$ , where $g$ is gravity so we get,
$mg = \dfrac{{GMm}}{{{R^2}}}$
On further simplification, we get,
$g = \dfrac{{GM}}{{{R^2}}}$
So we get equation as,
$g{R^2} = GM$ -------(1)
Let at height $h$ , distance from centre from Earth will be $R + h$ , gravity will be halved than that of surface, so we get,
$\dfrac{g}{2}{(R + h)^2} = GM$ ----------(2)
From equation $1\& 2$ we get,
$\dfrac{g}{2}{(R + h)^2} = g{R^2}$
On simplifying we get,
${(R + h)^2} = 2{R^2}$
Doing squareroot on both sides we get,
$R + h = \sqrt 2 R$
On simplifying this, we get,
$h = (\sqrt 2 - 1)R$
So the correct answer is option (C).
Note: Since the gravity at obtained height becomes half, it means any person will feel his weight half of his weight at the surface. When this height is enough to get out of the atmosphere, the weight decreases to zero, that’s why we feel zero weight in space.
Complete step by step solution:
We know that the force of attraction $F$ between two bodies having masses ${m_1}$ and ${m_2}$ separated by a distance $r$ is given by
$F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}$
Where $G$ is universal gravitational constant.
Let the mass of Earth be $M$ a point object of mass $m$ at surface of Earth of radius $R$ ,
Their force of attraction $F$ will be given by,
$F = \dfrac{{GMm}}{{{R^2}}}$
This force of attraction will be $F = mg$ , where $g$ is gravity so we get,
$mg = \dfrac{{GMm}}{{{R^2}}}$
On further simplification, we get,
$g = \dfrac{{GM}}{{{R^2}}}$
So we get equation as,
$g{R^2} = GM$ -------(1)
Let at height $h$ , distance from centre from Earth will be $R + h$ , gravity will be halved than that of surface, so we get,
$\dfrac{g}{2}{(R + h)^2} = GM$ ----------(2)
From equation $1\& 2$ we get,
$\dfrac{g}{2}{(R + h)^2} = g{R^2}$
On simplifying we get,
${(R + h)^2} = 2{R^2}$
Doing squareroot on both sides we get,
$R + h = \sqrt 2 R$
On simplifying this, we get,
$h = (\sqrt 2 - 1)R$
So the correct answer is option (C).
Note: Since the gravity at obtained height becomes half, it means any person will feel his weight half of his weight at the surface. When this height is enough to get out of the atmosphere, the weight decreases to zero, that’s why we feel zero weight in space.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Which of the following is the smallest unit of length class 11 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Charging and Discharging of Capacitor

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
